Skip to main content
Log in

Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The discovery of RNA interference (RNAi) as an endogenous mechanism of gene regulation in a range of eukaryotes has resulted in its extensive use as a tool for functional genomic studies. It is important to study the mechanisms which underlie this phenomenon in different organisms, and in particular to understand details of the effectors that modulate its effectiveness. The aim of this study was to identify and compare genomic sequences encoding genes involved in the RNAi pathway of four parasitic nematodes: the plant parasites Meloidogyne hapla and Meloidogyne incognita and the animal parasites Ascaris suum and Brugia malayi because full genomic sequences were available—in relation to those of the model nematode Caenorhabditis elegans. The data generated was then used to identify some potential targets for control of the root knot nematode, M. incognita. Of the 84 RNAi pathway genes of C. elegans used as model in this study, there was a 42–53 % reduction in the number of effectors in the parasitic nematodes indicating substantial differences in the pathway between species. A gene each from six functional groups of the RNAi pathway of M. incognita was downregulated using in vitro RNAi, and depending on the gene (drh-3, tsn-1, rrf-1, xrn-2, mut-2 and alg-1), subsequent plant infection was reduced by up to 44 % and knockdown of some genes (i.e. drh-3, mut-2) also resulted in abnormal nematode development. The information generated here will contribute to defining targets for more robust nematode control using the RNAi technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcazar RM, Lin R, Fire AZ (2008) Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180(3):1275–1288. doi:10.1534/genetics.108.089433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alder MN, Dames S, Gaudet J, Mango SE (2003) Gene silencing in Caenorhabditis elegans by transitive RNA interference. RNA 9(1):25–32. doi:10.1261/rna.2650903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashe A, Bélicard T, Le Pen J, Sarkies P, Frézal L, Lehrbach NJ, Félix M-A, Miska EA (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. eLife 2, e00994. doi:10.7554/eLife.00994

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakhetia M, Charlton W, Atkinson HJ, McPherson MJ (2005) RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Molecular Plant-Microbe Interactions 18 (10):1099–1106. doi:10.1094/MPMI-18-1099

  • Bakhetia M, Urwin P, Atkinson H (2008) Characterisation by RNAi of pioneer genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi. Int J Parasitol 38(13):1589–1597. doi:10.1016/j.ijpara.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  • Bert W, Karssen G, Helder J (2011) Phylogeny and evolution of nematodes. In: Jones JT, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Netherlands, pp 45–59. doi:10.1007/978-94-007-0434-3_3

    Chapter  Google Scholar 

  • Bird DM, Jones JT, Opperman CH, Kikuchi T, Danchin EG (2015) Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142 (S1):S71–S84

  • Britton C, Samarasinghe B, Knox DP (2012) Ups and downs of RNA interference in parasitic nematodes. Exp Parasitol 132(1):56–61. doi:10.1016/j.exppara.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  • Burke M, Scholl EH, Bird DM, Schaff JE, Colman SD, Crowell R, Diener S, Gordon O, Graham S, Wang X, Windham E, Wright GM, Opperman CH (2015) The plant parasite Pratylenchus coffeae carries a minimal nematode genome. Nematology 17(6):621–637. doi:10.1163/15685411-00002901

    Article  CAS  Google Scholar 

  • Calo S, Nicolás FE, Vila A, Torres-Martínez S, Ruiz-Vázquez RM (2012) Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Molecular Microbiology 83 (2):379–394. doi:10.1111/j.1365-2958.2011.07939.x

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890. doi:10.1093/nar/16.22.10881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, Tsai IJ, Beasley H, Blok V, Cock PJA, den Akker SE-v, Holroyd N, Hunt M, Mantelin S, Naghra H, Pain A, Palomares-Rius JE, Zarowiecki M, Berriman M, Jones JT, Urwin PE (2014) The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 15(3):R43–R43. doi:10.1186/gb-2014-15-3-r43

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalzell JJ, McVeigh P, Warnock ND, Mitreva M, Bird DM, Abad P, Fleming CC, Day TA, Mousley A, Marks NJ, Maule AG (2011) RNAi effector diversity in nematodes. PLoS Negl Trop Dis 5(6), e1176. doi:10.1371/journal.pntd.0001176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200. doi:10.1101/gad.862301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer SEJ, Butler MD, Pan Q, Ruvkun G (2008) Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7. Nature 455 (7212):491–496. doi:http://www.nature.com/nature/journal/v455/n7212/suppinfo/nature07274_S1.html

  • Fosu-Nyarko J, Jones MGK (2015) Chapter fourteen—application of biotechnology for nematode control in crop plants. In: Carolina E, Carmen F (eds) Advances in Botanical Research, vol Volume 73. Academic Press, pp 339–376. doi:http://dx.doi.org/10.1016/bs.abr.2014.12.012

  • Haerty W, Artieri C, Khezri N, Singh R, Gupta B (2008) Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution. BMC Genomics 9(1):399

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashmi S, Tawe W, Lustigman S (2001) Caenorhabditis elegans and the study of gene function in parasites. Trends Parasitol 17(8):387–393. doi:10.1016/S1471-4922(01)01986-9

    Article  CAS  PubMed  Google Scholar 

  • Holstein SEH, Oliviusson P (2005) Sequence analysis of Arabidopsis thaliana E/ANTH-domain-containing proteins: membrane tethers of the clathrin-dependent vesicle budding machinery. Protoplasma 226(1–2):13–21. doi:10.1007/s00709-005-0105-7

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Kawaguchi R, Nakayama J (2006) Conserved ribonuclease, Eri1, negatively regulates heterochromatin assembly in fission yeast. Curr Biol 16(14):1459–1464. doi:10.1016/j.cub.2006.05.061

    Article  CAS  PubMed  Google Scholar 

  • Iqbal S (2015) Effect of knockdown of genes involved in the rnai pathway on root-knot nematodes. PhD thesis. Murdoch University, Perth.

  • Issa Z, Grant WN, Stasiuk S, Shoemaker CB (2005) Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. Int J Parasitol 35(9):935–940. doi:10.1016/j.ijpara.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  • Jones MGK (1981) Host cell responses to endoparasitic nematode attack: structure and function of giant cells and syncytia. Ann Appl Biol 97(3):353–372. doi:10.1111/j.1744-7348.1981.tb05122.x

    Article  CAS  Google Scholar 

  • Jones MGK, Goto DB (2011) Root-knot nematodes and giant cells. In: Jones JT, G. G, C. F (eds) Genomics and Molecular Genetics of Plant Nematode Interactions. Springer, pp 83–100

  • Jose AM, Kim YA, Leal-Ekman S, Hunter CP (2012) Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc Natl Acad Sci 109(36):14520–14525. doi:10.1073/pnas.1201153109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketting RF, Haverkamp THA, van Luenen HGAM, Plasterk RHA (1999) mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of werner syndrome helicase and RNaseD. Cell 99(2):133–141. doi:10.1016/S0092-8674(00)81645-1

    Article  CAS  PubMed  Google Scholar 

  • Ketting RF, Fischer SEJ, Bernstein E, Sijen T, Hannon GJ, Plasterk RHA (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659. doi:10.1101/gad.927801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, Takanashi T, Tsai IJ, Assefa SA, Cock PJA, Otto TD, Hunt M, Reid AJ, Sanchez-Flores A, Tsuchihara K, Yokoi T, Larsson MC, Miwa J, Maule AG, Sahashi N, Jones JT, Berriman M (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog 7(9), e1002219. doi:10.1371/journal.ppat.1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Lee YS, Carthew RW (2007) Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13(1):22–29. doi:10.1261/rna.283207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotze AC, Bagnall NH (2006) RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Mol Biochem Parasitol 145(1):101–110. doi:10.1016/j.molbiopara.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, Ding SW (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436(7053):1040–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu R, Yigit E, Li W-X, Ding S-W (2009) An RIG-I-like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog 5(2), e1000286. doi:10.1371/journal.ppat.1000286

    Article  PubMed  PubMed Central  Google Scholar 

  • MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by dicer. Science 311(5758):195–198. doi:10.1126/science.1121638

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37(suppl 1):D205–D210. doi:10.1093/nar/gkn845

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CrJ LF, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(suppl 1):D225–D229. doi:10.1093/nar/gkq1189

    Article  CAS  PubMed  Google Scholar 

  • Nykänen A, Haley B, Zamore PD (2001) ATP Requirements and small interfering RNA structure in the RNA interference pathway. Cell 107(3):309–321. doi:10.1016/S0092-8674(01)00547-5

    Article  PubMed  Google Scholar 

  • Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode, Meloidogyne incognita. PLoS ONE 8(11), e80603. doi:10.1371/journal.pone.0080603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, Martin J, Schmid R, Hall N, Barrell B, Waterston RH, McCarter JP, Blaxter ML (2004) A transcriptomic analysis of the phylum Nematoda. Nature Genetics 36 (12):1259–1267. doi:http://www.nature.com/ng/journal/v36/n12/suppinfo/ng1472_S1.html

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6(10), e25709. doi:10.1371/journal.pone.0025709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plowman GD, Sudarsanam S, Bingham J, Whyte D, Hunter T (1999) The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci 96(24):13603–13610. doi:10.1073/pnas.96.24.13603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140:397–408. doi:10.1016/j.cell.2010.01.020

    Article  CAS  PubMed  Google Scholar 

  • Rosso MN, Jones JT, Abad P (2009) RNAi and functional genomics in plant parasitic nematodes. Annu Rev Phytopathol 47(1):207–232. doi:10.1146/annurev.phyto.112408.132605

    Article  CAS  PubMed  Google Scholar 

  • Sheps JA, Ralph S, Zhao Z, Baillie DL, Ling V (2004) The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol 5(3):R15–R15

    Article  PubMed  PubMed Central  Google Scholar 

  • Shih JD, Hunter CP (2011) SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17(6):1057–1065. doi:10.1261/rna.2596511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shingles J, Lilley CJ, Atkinson HJ, Urwin PE (2007) Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115(2):114–120. doi:10.1016/j.exppara.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107(4):465–476. doi:10.1016/S0092-8674(01)00576-1

    Article  CAS  PubMed  Google Scholar 

  • Simmer F, Tijsterman M, Parrish S, Koushika SP, Nonet ML, Fire A, Ahringer J, Plasterk RHA (2002) Loss of the putative RNA-directed RNA polymerase rrf-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12(15):1317–1319. doi:10.1016/S0960-9822(02)01041-2

    Article  CAS  PubMed  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner FA, Okihara KL, Hoogstrate SW, Sijen T, Ketting RF (2009) RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans. Nat Struct Mol Biol 16 (2):207–211. doi:http://www.nature.com/nsmb/journal/v16/n2/suppinfo/nsmb.1541_S1.html

  • Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1 Gene, RNA interference, and transposon silencing in C. elegans. Cell 99(2):123–132. doi:10.1016/S0092-8674(00)81644-X

    Article  CAS  PubMed  Google Scholar 

  • Tabara H, Yigit E, Siomi H, Mello CC (2002) The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109(7):861–871. doi:10.1016/S0092-8674(02)00793-6

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J-ACH, Jones MGK, Fosu-Nyarko J (2013) Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp Parasitol 133(2):166–178. doi:10.1016/j.exppara.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant-Microbe Interact 15:747

    Article  CAS  PubMed  Google Scholar 

  • Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. The Plant Cell Online 14 (4):857–867. doi:10.1105/tpc.010480

  • Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436(7053):1044–1047

    Article  CAS  PubMed  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219

    Article  CAS  PubMed  Google Scholar 

  • Yigit E, Batista PJ, Bei Y, Pang KM, Chen C-CG, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC (2006) Analysis of the C. elegans argonaute family reveals that distinct argonautes act sequentially during RNAi. Cell 127(4):747–757. doi:10.1016/j.cell.2006.09.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author is grateful to Endeavour Awards Australia for the PhD Scholarship and Murdoch University for funding this research. Many thanks to Mr. Gordon Thomson, School of Veterinary and Life Sciences, Murdoch University for his help in all the microscopy work and Ms Frances Brigg, WA State Agricultural Biotechnology Centre, Murdoch University for sequencing the DNA fragments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Fosu-Nyarko, J. & Jones, M.G.K. Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita . Funct Integr Genomics 16, 441–457 (2016). https://doi.org/10.1007/s10142-016-0495-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0495-y

Keywords

Navigation