Skip to main content
Log in

Molekulare Pathologie des kolorektalen Karzinoms

Molecular pathology of colorectal cancer

  • Pathologie
  • Published:
Wiener klinisches Magazin Aims and scope

Zusammenfassung

In den letzten Jahren konnten beim kolorektalen Karzinom (KRK) mehrere prädiktive und prognostische Biomarker etabliert werden. Der RAS-Mutationsstatus ist ein in der täglichen Routine breit angewendeter prädiktiver Biomarker für eine Therapie mit Epidermal-Growth-Factor-Receptor(EGFR)-Inhibitoren. Eine BRAF-Mutation besitzt in diesem Kontext hingegen keine prädiktive Aussagekraft. Der Nachweis einer hochgradigen Mikrosatelliteninstabilität (MSI-H) ist prädiktiv für das Ansprechen auf eine 5-Fluoruracil-Monotherapie. Prognostische Biomarker beim KRK sind der MSI-Status sowie der Nachweis einer BRAF-Mutation. Nach der aktuellen WHO-Klassifikation werden wenig und undifferenzierte KRK sowie MSI-assoziierte morphologische Sonderformen anhand des MSI-Status molekular graduiert. Der Nachweis einer BRAF-Mutation vor dem Hintergrund einer Mikrosatellitenstabilität (MSS) ist mit einer sehr schlechten Prognose assoziiert und stellt somit den aggressivsten molekularen Subtyp des KRK dar. Für die Abklärung eines begründeten Verdachts auf eine Assoziation eines KRK mit einem hereditären nichtpolipösen kolorektalen Karzinom (HNPCC-Syndrom) wird aktuell eine immunhistochemische und molekularpathologische Stufendiagnostik empfohlen.

Abstract

In recent years, several predictive and prognostic biomarkers have been established in colorectal cancer (CRC). The RAS-mutation status is widely applied in the daily routine diagnostic as predictive biomarker for treatment with EGFR-inhibitors. A BRAF- mutation has no predictive value in this context. The detection of high-grade microsatellite instability (MSI-H) is a predictive biomarker for response to 5-Fluoruracil-monotherapy. Prognostic biomarkers in CRC are the MSI-status and the mutational status of BRAF. According to the current WHO classification poorly and undifferentiated CRC and MSI-associated special morphological subtypes are molecular graded depending on their MSI-status. The detection of a BRAF-mutation in the context of microsatellite stability (MSS) is associated with a very poor prognosis and thus represents the most aggressive molecular subtype of CRC. In patients with positive Bethesda criteria a stepwise immunohistochemical and molecular diagnostic scheme is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. (Uk) SCC (12.09.2013) COSMIC (Catalogue of Somatic Mutations in Cancer). http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

  2. Adelstein BA, Dobbins TA, Harris CA et al (2011) A systematic review and meta-analysis of KRAS status as the determinant of response to anti-EGFR antibodies and the impact of partner chemotherapy in metastatic colorectal cancer. Eur J Cancer 47:1343–1354

    Article  PubMed  CAS  Google Scholar 

  3. Ashraf N, Kothari N, Kim R (2014) Predictive biomarkers for anti-epidermal growth factor receptor therapy: beyond KRAS testing. J Natl Compr Canc Netw 12:1433–1442

    PubMed  CAS  Google Scholar 

  4. Benatti P, Gafa R, Barana D et al (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11:8332–8340

    Article  PubMed  CAS  Google Scholar 

  5. Bokemeyer C, Van Cutsem E, Rougier P et al (2012) Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 48:1466–1475

    Article  PubMed  CAS  Google Scholar 

  6. Bosman F, Carneiro F, Hruban R et al (2010) WHO classification of tumours of the digestive system. International Agency for Research on Cancer (IARC), Lyon

  7. Carethers JM, Chauhan DP, Fink D et al (1999) Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117:123–131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762

  9. De Roock W, Jonker DJ, Di Nicolantonio F et al (2010) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304:1812–1820

    Article  PubMed  Google Scholar 

  10. De Roock W, De Vriendt V, Normanno N et al (2011) KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 12:594–603

  11. De Stefano A, Carlomagno C (2014) Beyond KRAS: predictive factors of the efficacy of anti-EGFR monoclonal antibodies in the treatment of metastatic colorectal cancer. World J Gastroenterol 20:9732–9743

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Des Guetz G, Schischmanoff O, Nicolas P et al (2009) Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer 45:1890–1896

    Article  PubMed  CAS  Google Scholar 

  13. Dietel M, Tannapfel A, Baretton G et al (2008) Molecular pathologic KRAS mutation analysis. A prerequisite of effective antibody treatment for metastasized colorectal cancer. Chirurg 79:576–579 (Zeitschrift fur alle Gebiete der operativen Medizen)

    Article  PubMed  CAS  Google Scholar 

  14. Dix BR, Robbins P, Soong R et al (1994) The common molecular genetic alterations in Dukes’ B and C colorectal carcinomas are not short-term prognostic indicators of survival. Int J Cancer 59:747–751 (Journal international du cancer)

    Article  PubMed  CAS  Google Scholar 

  15. Domingo E, Church DN, Sieber O et al (2013) Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol 31:4297–4305

    Article  PubMed  CAS  Google Scholar 

  16. Dovizio M, Bruno A, Tacconelli S et al (2013) Mode of action of aspirin as a chemopreventive agent. Recent Results Cancer Res 191:39–65 (Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer)

    Article  PubMed  CAS  Google Scholar 

  17. Funkhouser WK Jr, Lubin IM, Monzon FA et al (2012) Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn 14:91–103

    Article  PubMed  CAS  Google Scholar 

  18. Gausachs M, Mur P, Corral J et al (2012) MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur J Hum Genet 20:762–768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Giardiello FM, Allen JI, Axilbund JE et al (2014) Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society task force on colorectal cancer. Gastroenterology 147:502–526

    Article  PubMed  Google Scholar 

  20. Herzig DO, Tsikitis VL (2014) Molecular markers for colon diagnosis, prognosis and targeted therapy. J Surg Oncol 111:96–102

  21. Hutchins G, Southward K, Handley K et al (2011) Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 29:1261–1270

    Article  PubMed  Google Scholar 

  22. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  PubMed  CAS  Google Scholar 

  23. Jover R, Zapater P, Castells A et al (2009) The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur J Cancer 45:365–373

    Article  PubMed  CAS  Google Scholar 

  24. Lee S, Cho NY, Choi M et al (2008) Clinicopathological features of CpG island methylator phenotype-positive colorectal cancer and its adverse prognosis in relation to KRAS/BRAF mutation. Pathol Int 58:104–113

    Article  PubMed  CAS  Google Scholar 

  25. Li X, Yao X, Wang Y et al (2013) MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. PloS One 8:e59064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Liao X, Lochhead P, Nishihara R et al (2012) Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 367:1596–1606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Lindor NM, Burgart LJ, Leontovich O et al (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20:1043–1048

    Article  PubMed  CAS  Google Scholar 

  28. Malesci A, Laghi L, Bianchi P et al (2007) Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res 13:3831–3839

    Article  PubMed  CAS  Google Scholar 

  29. Mitsudomi T, Yatabe Y (2010) Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 277(2):301–308

    Article  PubMed  CAS  Google Scholar 

  30. Modest DP, Jung A, Moosmann N et al. (2012) The influence of KRAS and BRAF mutations on the efficacy of cetuximab-based first-line therapy of metastatic colorectal cancer: an analysis of the AIO KRK-0104-trial. International journal of cancer. Int J Cancer 131:980–986

    Article  PubMed  CAS  Google Scholar 

  31. Modest DP, Stintzing S, Laubender RP et al (2011) Clinical characterization of patients with metastatic colorectal cancer depending on the KRAS status. Anticancer Drugs 22:913–918

    Article  PubMed  CAS  Google Scholar 

  32. Neumann J, Zeindl-Eberhart E, Kirchner T et al (2009) Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract 205:858–862

    Article  PubMed  CAS  Google Scholar 

  33. Neumann J, Reu S, Kirchner T (2012) Prognostic marker profiles for risk of distant metastases in colorectal cancer. Pathologe 33:39–44

    Article  PubMed  CAS  Google Scholar 

  34. Neumann J, Wehweck L, Maatz S et al (2013) Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Arch

  35. Neumann JH, Kirchner T (2014) Colorectal carcinoma in consideration of the new German S3 guideline 2013. Pathologe 35:615–621; quiz 622–623

  36. Newton K, Jorgensen NM, Wallace AJ et al (2014) Tumour MLH1 promoter region methylation testing is an effective prescreen for Lynch Syndrome (HNPCC). J Med Genet 51:789–796

  37. Perez-Carbonell L, Alenda C, Paya A et al. (2010) Methylation analysis of MLH1 improves the selection of patients for genetic testing in Lynch syndrome. J Mol Diagn 12:498–504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Pox CP, Schmiegel W (2013) [German S3-guideline colorectal carcinoma]. Dtsch Med Wochenschr 138:2545

    Article  PubMed  CAS  Google Scholar 

  39. Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Rolfo C, Bronte G, Sortino G et al (2014) The role of targeted therapy for gastrointestinal tumors. Expert Rev Gastroenterol Hepatol 1–11

  41. Roth AD, Tejpar S, Delorenzi M et al (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J Clin Oncol 28:466–474

    Article  PubMed  CAS  Google Scholar 

  42. Sameer AS, Nissar S, Fatima K (2014) Mismatch repair pathway: molecules, functions, and role in colorectal carcinogenesis. Eur J Cancer Prev 23:246–257

    Article  PubMed  CAS  Google Scholar 

  43. Samowitz WS, Sweeney C, Herrick J et al (2005) Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 65:6063–6069

    Article  PubMed  CAS  Google Scholar 

  44. Shia J (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 10:293–300

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shia J, Klimstra DS, Nafa K et al (2005) Value of immunohistochemical detection of DNA mismatch repair proteins in predicting germline mutation in hereditary colorectal neoplasms. Am J Surg Pathol 29:96–104

    Article  PubMed  Google Scholar 

  46. Sorich MJ, Wiese MD, Rowland A et al (2015) Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol 26:13–21

    Article  PubMed  CAS  Google Scholar 

  47. Stintzing S, Heinemann V, Moosmann N et al (2009) The treatment of colorectal carcinoma with monoclonal antibodies: the importance of KRAS mutation analysis and EGFR status. Dtsch Arztebl Int 106:202–206

    PubMed  PubMed Central  Google Scholar 

  48. Stone JG, Robertson D, Houlston RS (2001) Immunohistochemistry for MSH2 and MHL1: a method for identifying mismatch repair deficient colorectal cancer. J Clin Pathol 54:484–487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Tejpar S, Celik I, Schlichting M et al (2012) Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 30:3570–3577

    Article  PubMed  CAS  Google Scholar 

  50. Therkildsen C, Bergmann TK, Henrichsen-Schnack T et al (2014) The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol 53:852–864

    Article  PubMed  CAS  Google Scholar 

  51. Toon CW, Chou A, Desilva K et al (2014) BRAFV600E immunohistochemistry in conjunction with mismatch repair status predicts survival in patients with colorectal cancer. Mod Pathol 27:644–650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Umar A, Boland CR, Terdiman JP et al (2004) Revised bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Umar A, Risinger JI, Hawk ET et al (2004) Testing guidelines for hereditary non-polyposis colorectal cancer. Nat Rev Cancer 4:153–158

    Article  PubMed  CAS  Google Scholar 

  54. Vasen HF, Watson P, Mecklin JP et al (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456

    Article  PubMed  CAS  Google Scholar 

  55. Wright CM, Dent OF, Barker M et al (2000) Prognostic significance of extensive microsatellite instability in sporadic clinicopathological stage C colorectal cancer. Br J Surg 87:1197–1202

    Article  PubMed  CAS  Google Scholar 

  56. Yokota T (2012) Are KRAS/BRAF mutations potent prognostic and/or predictive biomarkers in colorectal cancers? Anticancer Agents Med Chem 12:163–171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Yoon HH, Tougeron D, Shi Q et al (2014) KRAS codon 12 and 13 mutations in relation to disease-free survival in BRAF-wild-type stage III colon cancers from an adjuvant chemotherapy trial (N0147 alliance). Clin Cancer Res 20:3033–3043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens H.L. Neumann.

Ethics declarations

Erklärung zum Interessenkonflikt

T.Kirchner gibt finanzielle Verbindungen zu AMGEN, Merck-Sorono und Roche Diagnostics an. A. Jung gibt finanzielle Verbindungen zu AMGEN und Merck-Sorono an. J. Neumann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Additional information

Dieser Beitrag wurde in der Zeitschrift Der Pathologie 2015 · 36:137–144. DOI 10.1007/s00292-015-0005-3 erstveröffentlicht. Zweitpublikation mit freundlicher Genehmigung des Autors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumann, J., Jung, A. & Kirchner, T. Molekulare Pathologie des kolorektalen Karzinoms. Wien klin Mag 18, 140–148 (2015). https://doi.org/10.1007/s00740-015-0061-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00740-015-0061-6

Schlüsselwörter

Keywords

Navigation