Skip to main content
Log in

From pointwise to local regularity for solutions of Hamilton–Jacobi equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

It is well-known that solutions to the Hamilton–Jacobi equation

$$\begin{aligned} u_{t}(t,x)+H(x,u_{x}(t,x))=0 \end{aligned}$$

fail to be everywhere differentiable. Nevertheless, suppose a solution \(u\) turns out to be differentiable at a given point \((t,x)\) in the interior of its domain. May then one deduce that \(u\) must be continuously differentiable in a neighborhood of \((t,x)\)? Although this question has a negative answer in general, our main result shows that it is indeed the case when the proximal subdifferential of \(u(t,\cdot )\) at \(x\) is nonempty. Our approach uses the representation of \(u\) as the value function of a Bolza problem in the calculus of variations, as well as necessary conditions for such a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardi, M., Capuzzo Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi equations. Birkhäuser, Boston (1997)

  2. Barles G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Berlin (1994)

  3. Bianchini, S., De Lellis, C., Robyr, R.: SBV regularity for Hamilton Jacobi equations in \({\mathbb{R}}^n\). Arch. Ration. Mech. Anal. 200, 1003–1021 (2011)

    Google Scholar 

  4. Bianchini, S., Tonon, D.: SBV regularity for Hamilton–Jacobi equations with Hamiltonian depending on (t, x). SIAM J. Math. Anal. 44(3), 2179–2203 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cannarsa, P., Frankowska, H.: Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29, 1322–1347 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cannarsa, P., Mennucci, A., Sinestrari, C.: Regularity results for solutions of a class of Hamilton–Jacobi equations. Arch. Ration. Mech. Anal. 140, 197–223 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. Progress in nonlinear differential equations and their applications, vol. 58. Birkhäuser, Boston (2004)

  8. Cannarsa, P., Soner, H.M.: On the singularities of the viscosity solutions to Hamilton–Jacobi–Bellman equations. Indiana Univ. Math. J. 36, 501–524 (1987)

    Article  MathSciNet  Google Scholar 

  9. Cannarsa, P., Soner, H.M.: Generalized one-sided estimates for solutions of Hamilton–Jacobi equations and applications. Nonlinear Anal. 13, 305–323 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caroff, N., Frankowska, H.: Conjugate points and shocks in nonlinear optimal control. Trans. Am. Math. Soc. 348, 3133–3153 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caroff, N., Frankowska, H.: Optimality and characteristics of Hamilton–Jacobi–Bellman equations. In: Proceedings of Premier Colloque Franco-Roumain sur L‘Optimisation, Controle Optimal, equations aux Dérivées Partielles, 7–11 September, 1992, International Series of Numerical Mathematics, vol. 107, pp. 169–180. Birkhäuser, Basel (1992)

  12. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. math. 146, 219–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dal Maso, G., Frankowska, H.: Value functions for Bolza problems with discontinuous lagrangians and Hamilton–Jacobi inequalities. ESAIM: Control Optim Calc. Var. 5, 369–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dal Maso, G., Frankowska, H.: Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton–Jacobi equations. Appl. Math. Optim. 48, 39–66 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Figalli, A., Rifford, L.: Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 20, 124–159 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fleming, W.H.: The Cauchy problem for a nonlinear first order partial differential equation. J. Differ. Equ. 5, 515–530 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. Springer, Berlin (1993)

  21. Ishii, H.: Uniqueness of unbounded viscosity solutions of Hamilton–Jacobi equations. Indiana Univ. Math. J. 33, 721–748 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions, P.-L.: Generalized solutions of Hamilton–Jacobi equations. Pitman, Boston (1982)

    MATH  Google Scholar 

  23. Vinter, R.: Optimal control. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cannarsa.

Additional information

Communicated by L. Ambrosio.

This work was co-funded by the European Union under the 7th Framework Programme “FP7-PEOPLE-2010-ITN”, grant agreement number 264735-SADCO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannarsa, P., Frankowska, H. From pointwise to local regularity for solutions of Hamilton–Jacobi equations. Calc. Var. 49, 1061–1074 (2014). https://doi.org/10.1007/s00526-013-0611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0611-y

Mathematics Subject Classification

Navigation