Skip to main content
Log in

A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The system of partial differential equations

$$ \left\{ \begin{array}{l}-{\rm div}(vDu)=f\quad {\rm in}\;{\rm \Omega}\\ |Du|-1=0\quad {\rm in }\;\{v > 0 \} \end{array} \right. $$

arises in the analysis of mathematical models for sandpile growth and in the context of the Monge–Kantorovich optimal mass transport theory. A representation formula for the solutions of a related boundary value problem is here obtained, extending the previous two-dimensional result of the first two authors to arbitrary space dimension. An application to the minimization of integral functionals of the form

$$\int_{{\rm \Omega}} [h(|Du|)-f(x) u]{\rm d}x, $$

with f≥ 0, and h≥ 0 possibly non-convex, is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Lecture notes on optimal transport problems. Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes in Math. 1812, pp. 1–52. Springer, Berlin, (2003)

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems and Control: Foundations and Applications. Boston, Birkhäuser (1997)

    Google Scholar 

  3. Boutreux, T., de Gennes, P.-G.: Surface flows of granular mixtures. I. General principles and minimal model. J. Phys. I France 6, 1295–1304 (1996)

    Article  Google Scholar 

  4. Cannarsa, P., Cardaliaguet, P.: Representation of equilibrium solutions to the table problem for growing sandpile. J. Eur. Math. Soc. 6, 1–30 (2004)

    MathSciNet  Google Scholar 

  5. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and Theyr Applications. Boston, Birkhäuser (2004)

    Google Scholar 

  6. Celada, P., Cellina, A.: Existence and non existence of solutions to a variational problem on a square. Houston J. Math. 24, 345–375 (1998)

    MathSciNet  Google Scholar 

  7. Celada, P., Perrotta, S., Treu, G.: Existence of solutions for a class of non convex minimum problems. Math. Z. 228, 177–199 (1997)

    MathSciNet  Google Scholar 

  8. Cellina, A.: Minimizing a functional depending on ∇ u and on u. Ann. Inst. H. Poincaré, Anal. Non Linéaire 14, 339–352 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Clarke, F.H., Ledyaev, Yu. S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. New York, Springer (1998)

    Google Scholar 

  10. Crasta, G., Malusa, A.: Geometric constraints on the domain for a class of minimum problems. ESAIM Control Optim. Calc. Var. 9, 125–133 (2003)

    MathSciNet  Google Scholar 

  11. Evans, L.C., Feldman, M., Gariepy, R.: Fast/slow diffusion and collapsing sandpiles. J. Differential Equations 137(1), 166–209 (1997)

    Article  MathSciNet  Google Scholar 

  12. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653), (1999)

  13. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

    Google Scholar 

  14. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    MathSciNet  MATH  Google Scholar 

  15. Feldman, M.: Variational evolution problems and nonlocal geometric motion. Arch. Rational Mech. Anal. 146, 221–274 (1999)

    Article  MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, 224. Berlin, Springer-Verlag (1983).

    Google Scholar 

  17. Hadeler, K.P., Kuttler, C.: Dynamical Models for Granular Matter. Granular Matter 2, 9–18 (1999)

    Article  Google Scholar 

  18. Itoh, J., Tanaka, M.: The Lipschitz continuity of the distance function to the cut locus. Trans. Am. Math. Soc. 353(1), 21–40 (2001)

    Article  MathSciNet  Google Scholar 

  19. Li, Y.Y., Nirenberg, L.: The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton–Jacobi equations, Commun. Pure Appl. Math. 58, 85–146 (2005)

    MathSciNet  Google Scholar 

  20. Lions, P.L.: Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics, vol. 69. Boston London Melbourne, Pitman (1982)

    Google Scholar 

  21. Prigozhin, L.: Variational model of sandpile growth. European J. Appl. Math. 7(3), 225–235 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Schneider, R.: Convex Bodies: The Brunn–Minkowski theory. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  23. Treu, G.: An existence result for a class of non convex problems of the Calculus of Variations. J. Convex Anal. 5, 31–44 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Vornicescu, M.: A variational problem on subsets of ℝn. Proc. Roy. Soc. Edinburgh Sect. A 127, 1089–1101 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cannarsa.

Additional information

Mathematics Subject Classification: Primary 35C15, 49J10, Secondary 35Q99, 49J30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannarsa, P., Cardaliaguet, P., Crasta, G. et al. A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications. Calc. Var. 24, 431–457 (2005). https://doi.org/10.1007/s00526-005-0328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-005-0328-7

Keywords

Navigation