Skip to main content
Log in

Mechanical properties of poly(vinyl methyl ether) hydrogels below and above their volume phase transition

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The mechanical properties of radiation cross-linked poly(vinyl methyl ether) hydrogels below and above the volume phase transition (VPT) under isobar conditions were studied. The viscoelastic properties as a function of radiation dose, radiation source and polymer concentration at the state of irradiation were examined. Increased radiation doses led to higher cross-linking densities and higher moduli. Hydrogels irradiated with γ-rays were much harder than those obtained with electron beam irradiation at the same radiation dose. It was found that the modulus strongly increased by up to 1 order of magnitude at a temperature of the VPT of about 37 °C. In the collapsed state at temperatures well above the VPT a frequency dependence of the E′(ω) moduli in the range 0.1–22 Hz was detected, indicating viscoelastic behavior. To study the influence of solvent quality on the modulus of the hydrogels, rheological measurements were performed in water, 2-propanol and cyclohexane. A scaling exponent for the modulus according to de Gennes (G′∝φ2.25) was not found. Possible reasons for deviations (G′∝φ3.54) on poly(vinyl methyl ether) hydrogels were discussed in the context of deviations from ideal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmidt J, Burchard W, Richtering W (2003) Biomacromolecules 4:453

    Article  CAS  PubMed  Google Scholar 

  2. Shibayama M, Tanaka T (1993) Adv Polym Sci 109:1

    CAS  Google Scholar 

  3. Wu C, Zhou S (1997) Macromolecules 30:574

    Article  CAS  Google Scholar 

  4. Shibayama M, Nagai K (1999) Macromolecules 32:7461

    Article  CAS  Google Scholar 

  5. Rosiak JM, Yoshii F (1999) Nucl Instrum Meth Phys Res Sect B 151:56

    Article  CAS  Google Scholar 

  6. Hoffman S (1995) Macromol Symp 98:645

    CAS  Google Scholar 

  7. Arndt KF, Kuckling D, Richter A (2000) Polym Adv Technol 11:496

    Article  CAS  Google Scholar 

  8. Hirotsu S (1991) J Chem Phys 94:3949

    Article  CAS  Google Scholar 

  9. Hirotsu S (1990) Macromolecules 23:903

    CAS  Google Scholar 

  10. Shibayama M, Moritomo M, Nomura S (1994) Macromolecules 27:5060

    CAS  Google Scholar 

  11. Shibayama, M Nagai K (1999) Macromolecules 32:7461

    Article  CAS  Google Scholar 

  12. Knörgen M, Arndt KF, Richter S, Kuckling D, Schneider H (2000) J Mol Struct 554:69

    Article  Google Scholar 

  13. Moerkerke R, Meeussen F, Koningsveld R, Berghmans H, Mondelaers W, Schacht E, Dusek K, Solc K (1998) Macromolecules 31:2223

    Article  CAS  Google Scholar 

  14. Kabra BG, Akhtar MK, Gehrke SH (1992) Polymer 33:990

    Article  CAS  Google Scholar 

  15. Kishi R, Ichijo H, Hirasa O (1993) J Intell Mater Syst Struct 4:533

    Google Scholar 

  16. Ichijo H, Hirasa O, Kishi R, Oowada M, Sahara K, Kokufuta E, Kohno S (1995) Radiat Phys Chem 46:185

    Article  CAS  Google Scholar 

  17. Liu X, Briber RM, Bauer BJ (1994) J Polym Sci Part B Polym Phys 32:811

    Article  CAS  Google Scholar 

  18. Janik I, Ulanski P, Rosiak JM, von Sonntag C (2000) J Chem Soc Perkin Trans 2 2034

  19. Janik I, Ulanski P, Hildenbrand K, Rosiak JM, von Sonntag C (2000) J Chem Soc Perkin Trans 2 2041

  20. Schmidt T (2000) Diploma thesis. TU Dresden

  21. Arndt KF, Schmidt T, Menge H (2001) Macromol Symp 164:313

    Article  CAS  Google Scholar 

  22. Manson JA, Arquette GJ (1960) Macromol Chem 37:187

    Article  CAS  Google Scholar 

  23. Petri HM, Schuld N, Wolf BA (1995) Macromolecules 28:4975

    CAS  Google Scholar 

  24. Kavanagh GM, Ross-Murphy SB (1998) Prog Polym Sci 23:533

    Article  CAS  Google Scholar 

  25. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

  26. (a) de Gennes PG (1976) Macromolecules 9:587; (b) de Gennes PG (1976) Macromolecules 9:594

  27. Daoud M, Jannink G (1976) J Phys (Paris) 37:973

    Google Scholar 

  28. Brochard F, de Gennes PG (1977) Macromolecules 10:1157

    CAS  Google Scholar 

  29. Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Duplessix R, Picot C, de Gennes PG (1975) Macromolecules 8:804

    CAS  Google Scholar 

  30. Cotton JP, Nierlich M, Boue F, Daoud M, Farnoux B, Jannink G, Duplessix R, Picot C (1976) J Chem Phys 65:1101

    Article  CAS  Google Scholar 

  31. Munch JP, Candau S, Herz J, Hild G (1977) J Phys (Paris) 38:971

    Google Scholar 

  32. Belkebir-Mrani A, Herz JE, Rempp P (1977) Makromol Chem 178:485

    Article  CAS  Google Scholar 

  33. Geissler E, Hecht AM (1978) J Phys (Paris) 39:955

    Google Scholar 

  34. Candau S, Bastide J, Delsanti M (1982) Adv Polym Sci 44:27

    CAS  Google Scholar 

  35. Horkay F, Zrinyi M (1981) Polym Bull 4:361

    CAS  Google Scholar 

  36. Zrinyi M, Horkay F (1980) Polym Bull 3:665

    CAS  Google Scholar 

  37. Horkay F, Zrinyi M (1982) Macromolecules 15:1306

    CAS  Google Scholar 

  38. Meyvis TKL, De Smedt SC, Demeester J, Hennink WE (1999) J Rheol 43:933

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For the possibility to work in his group the author thanks H.H. Winter (Department of Chemical Engineering and Department of Polymer Science and Engineering, University of Massachusetts at Amherst, MA, USA). B.D. Chin and R. Horst (University of Massachusetts at Amherst) prepared the experiment in the linear rheometer and the ARES. T. Schmidt (TU Dresden) is acknowledged for helping with the preparation of the samples. The author thanks furthermore H. Dorschner (Institute of Polymer Research Dresden), for electron-beam irradiation and U. Gohs (Gamma-Service Radeberg), for γ-ray irradiation. Last but not least, the author especially expresses his gratitude to G. Heinrich (Institute of Polymer Research Dresden) for critical reading the manuscript and many fruitful discussions. This work was kindly supported by the Deutsche Forschungsgemeinschaft, grant nos. RI 1079/1-1 and RI 1079/1-2 to S.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S. Mechanical properties of poly(vinyl methyl ether) hydrogels below and above their volume phase transition. Colloid Polym Sci 282, 1213–1221 (2004). https://doi.org/10.1007/s00396-004-1178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1178-0

Keywords

Navigation