Skip to main content
Log in

Large-scale preparation of graphene sheets and their easy incorporation with other nanomaterials

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Graphene dispersions with concentrations up to 0.5 mg/mL were produced by dispersion in N,N-dimethylformamide with the aid of polyacrylic acid. Graphene oxide could also be dispersed with even higher concentration (17 mg/mL), and this advantage was used for the large-scale synthesis of graphene. The good dispersion of graphene sheets also facilitated the preparation of a new hybrid material of graphene and Fe3O4 nanoparticles, which exhibited interesting magnetic properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  3. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  4. Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  5. Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R et al (2004) Ultrathin epitaxial graphite: two-dimensional electron gas properties and a route towards graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916

    Article  CAS  Google Scholar 

  6. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang EG et al (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotech 3:538–542

    Article  CAS  Google Scholar 

  7. Wang Y, Huang Y, Song Y, Zhang XY, Ma YF, Liang JJ et al (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224

    Article  CAS  Google Scholar 

  8. Di CA, Wei DC, Yu G, Liu YQ, Guo YL, Zhu DB (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20:3289–3293

    Article  CAS  Google Scholar 

  9. Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    Article  CAS  Google Scholar 

  10. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotech 4:30–33

    Article  CAS  Google Scholar 

  11. Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411

    Article  CAS  Google Scholar 

  12. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotech 3:563–568

    Article  CAS  Google Scholar 

  13. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotech 3:101–105

    Article  CAS  Google Scholar 

  14. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721

    Article  CAS  Google Scholar 

  15. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  16. Bai H, Xu YX, Zhao L, Li C, Shi GQ (2009) Non-convalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669

    Article  Google Scholar 

  17. Si YC, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  18. Veca LM, Lu F, Meziani MJ, Cao L, Zhang PY, Sun YP et al (2009) Polymer functionalization and solubilization of carbon nanosheets. Chem Commun 18:2565–2567

    Article  Google Scholar 

  19. Tang BZ, Xu HY (1999) Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 32:2569–2576

    Article  CAS  Google Scholar 

  20. Hummers WS Jr, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  21. Shen J, Hu Y, Li C, Qin C, Shi M, Ye MX (2009) Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25:6122–6128

    Article  CAS  Google Scholar 

  22. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  23. Zhang XL, Zhao X, Liu ZB, Liu YS, Chen YS, Tian JG (2009) Enhanced nonlinear optical properties of graphene–oligothiophene hybrid material. Opt Express 17(26):23959–23964

    Article  CAS  Google Scholar 

  24. Liu Z, Xu YF, Zhang XY, Zhang XL, Chen YS, Tian JG (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113:9681–9686

    Article  CAS  Google Scholar 

  25. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nature Nanotech 4:217–224

    Article  CAS  Google Scholar 

  26. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nature Nanotech 4:25–29

    Article  CAS  Google Scholar 

  27. Kosynkin DV, Higginbotham AL, Sinitskii A, Dimiev A, Price BK, Tour JM et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  CAS  Google Scholar 

  28. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  29. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  CAS  Google Scholar 

  30. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Nguyen ST, Ruoff RS et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  31. Ramanathan T, Abdala AA, Stankovich S, Aksay IA, Prud’homme RK, Brinson LC et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotech 3:327–331

    Article  CAS  Google Scholar 

  32. Radovic LR, Bockrath B (2005) On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. J Am Chem Soc 127:5917–5927

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Science Foundation of China (no. 20674059) and the program of NCET for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3781 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Qin, J. & Li, Z. Large-scale preparation of graphene sheets and their easy incorporation with other nanomaterials. Polym. Bull. 69, 899–910 (2012). https://doi.org/10.1007/s00289-012-0803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0803-1

Keywords

Navigation