Skip to main content
Log in

Inferring average generation via division-linked labeling

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

For proliferating cells subject to both division and death, how can one estimate the average generation number of the living population without continuous observation or a division-diluting dye? In this paper we provide a method for cell systems such that at each division there is an unlikely, heritable one-way label change that has no impact other than to serve as a distinguishing marker. If the probability of label change per cell generation can be determined and the proportion of labeled cells at a given time point can be measured, we establish that the average generation number of living cells can be estimated. Crucially, the estimator does not depend on knowledge of the statistics of cell cycle, death rates or total cell numbers. We explore the estimator’s features through comparison with physiologically parameterized stochastic simulations and extrapolations from published data, using it to suggest new experimental designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89(21):10114–10118

    Article  Google Scholar 

  • Asmussen S (1998) A probabilistic look at the Wiener–Hopf equation. SIAM Rev 40(2):189–201

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya KB, Kaplan N (1976) Convergence of the age distribution in the one-dimensional supercritical age-dependent branching process. Ann Probab 4(1):38–50

    Article  MathSciNet  MATH  Google Scholar 

  • Bai L, Charvin G, Siggia ED, Cross FR (2010) Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev Cell 18(4):544-555

  • Bellman R, Harris T (1952) On age-dependent binary branching processes. Ann Math 2(55):280–295

    Article  MathSciNet  MATH  Google Scholar 

  • Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Gräf P, Verschoor A, Schiemann M, Höfer T, Busch DH (2013) Disparate individual fates compose robust CD8+ T cell immunity. Science 340(6132):630–635

    Article  Google Scholar 

  • Carlson A, Kas A, Kirkwood R, Hays LE, Preston BD, Salipante SJ, Horwitz MS (2012) Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nat Methods 9(1):78–80

    Article  Google Scholar 

  • Crump KS, Mode CJ (1969) An age-dependent branching process with correlations among sister cells. J Appl Probab 6(1):205–210

    Article  MathSciNet  MATH  Google Scholar 

  • De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45–87

    Article  MathSciNet  MATH  Google Scholar 

  • Dowling MR, Kan A, Heinzel S, Zhou JHS, Marchingo JM, Wellard CJ, Markham JF, Hodgkin PD (2014) Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA 111(17):6377–6382

    Article  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686

    Google Scholar 

  • Duffy KR, Subramanian VG (2009) On the impact of correlation between collaterally consanguineous cells on lymphocyte population dynamics. J Math Biol 59(2):255–285

    Article  MathSciNet  MATH  Google Scholar 

  • Duffy KR, Wellard CJ, Markham JF, Zhou JHS, Holmberg R, Hawkins ED, Hasbold J, Dowling MR, Hodgkin PD (2012) Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335(6066):338–341

    Article  Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, vol I. Wiley, New York

    MATH  Google Scholar 

  • Frank SA, Iwasa Y, Nowak MA (2003) Patterns of cell division and the risk of cancer. Genetics 163(4):1527–1532

    Google Scholar 

  • Gasche C, Chang CL, Natarajan L, Goel A, Rhees J, Young DJ, Arnold CN, Boland CR (2003) Identification of frame-shift intermediate mutant cells. Proc Natl Acad Sci USA 100(4):1914–1919

    Article  Google Scholar 

  • Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JWJ, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB, de Boer R, Schumacher T (2013) Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340(6132):635–639

    Article  Google Scholar 

  • Giurumescu CA, Kang S, Planchon TA, Betzig E, Bloomekatz J, Yelon D, Cosman P, Chisholm AD (2012) Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 139(22):4271–4279

    Article  Google Scholar 

  • Golden JA, Fields-Berry SC, Cepko CL (1995) Construction and characterization of a highly complex retroviral library for lineage analysis. Proc Natl Acad Sci USA 92(12):5704–5708

    Article  Google Scholar 

  • Gomes FL, Zhang G, Carbonell F, Correa JA, Harris WA, Simons BD, Cayouette M (2011) Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138(2):227–235

    Article  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nat Genet 345(6274):458–460

    Google Scholar 

  • Harris TE (1963) The theory of branching processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD (2007) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc 2(9):2057–2067

    Article  Google Scholar 

  • Hawkins ED, Markham JF, McGuinness LP, Hodgkin PD (2009) A single-cell pedigree analysis of alternative stochastic lymphocyte fates. Proc Natl Acad Sci USA 106(32):13457–13462

    Article  Google Scholar 

  • Hills M, Lücke K, Chavez EA, Eaves CJ, Lansdorp PM (2009) Probing the mitotic history and developmental stage of hematopoietic cells using single telomere length analysis (STELA). Blood 113(23):5765–5775

    Article  Google Scholar 

  • Jagers P (1969) The proportions of individuals of different kinds in two-type populations. A branching process problem arising in biology. J Appl Probab 6:249–260

    Article  MathSciNet  MATH  Google Scholar 

  • Jagers P (1969) Renewal theory and the almost sure convergence of branching processes. Arkiv Mate 7(6):495–504

    Article  MathSciNet  MATH  Google Scholar 

  • Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59:169–186

    Google Scholar 

  • Kimmel M, Axelrod DE (2002) Branching processes in biology. Springer, New York

    Book  MATH  Google Scholar 

  • Koole W, Tijsterman M (2014) Mosaic analysis and tumor induction in zebrafish by microsatellite instability-mediated stochastic gene expression. Dis Model Mech 7(7):929–936

    Article  Google Scholar 

  • Koole W, Schäfer HS, Agami R, van Haaften G, Tijsterman M (2013) A versatile microsatellite instability reporter system in human cells. Nucleic Acids Res 41(16):e158

    Article  Google Scholar 

  • Kozar S, Morrissey E, Nicholson AM, van der Heijden M, Zecchini HI, Kemp R, Tavaré S, Vermeulen L, Winton DJ (2013) Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13(5):626–633

    Article  Google Scholar 

  • Krantz SG, Parks HR (2002) A primer of real analytic functions. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AMK, Ng K, Ma J, Wienholds E, Dunant C, Pollett A, Gallinger S, McPherson J, Mullighan CG, Shibata D, Dick JE (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548

    Article  Google Scholar 

  • Levinson N (1960) Limiting theorems for age-dependent branching processes. Ill J Math 4:100–118

    MathSciNet  MATH  Google Scholar 

  • Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146(2):209–221

    Article  Google Scholar 

  • Lu R, Neff NF, Quake SR, Weissman IL (2011) Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 29(10):928–933

    Article  Google Scholar 

  • Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1):147–154

    Article  MathSciNet  Google Scholar 

  • Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171(1):131–137

    Article  Google Scholar 

  • Marchingo JM, Kan A, Sutherland RM, Duffy KR, Wellard CJ, Belz GT, Lew AM, Dowling MR, Heinzel S, Hodgkin PD (2014) Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science 346(6213):1123–1127

    Article  Google Scholar 

  • Markham JF, Wellard CJ, Hawkins ED, Duffy KR, Hodgkin PD (2010) A minimum of two distinct heritable factors are required to explain correlation structures in proliferating lymphocytes. J R Soc Interface 7(48):1049–1059

    Article  Google Scholar 

  • Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935

    Article  Google Scholar 

  • Mode CJ (1966) Restricted transition probabilities and their applications to some problems in the dynamics of biological populations. Bull Math Biophys 28:315–331

    Article  MathSciNet  MATH  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  Google Scholar 

  • Naik S, Perié L, Swart E, Gerlach C, van Rooi N, de Boer R, Schumacher T (2013) Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496:229–233

    Article  Google Scholar 

  • Olofsson P (1996) Branching processes with local dependencies. Ann Appl Probab 6(1):238–268

    Article  MathSciNet  MATH  Google Scholar 

  • Perié L, Hodgkin PD, Naik SH, Schumacher TN, de Boer RJ, Duffy KR (2014) Determining lineage pathways from cellular barcoding experiments. Cell Rep 6(4):617–624

    Article  Google Scholar 

  • Powell EO (1955) Some features of the generation times of individual bacteria. Biometrika 42:16–44

    Article  Google Scholar 

  • Quah BJC, Parish CR (2012) New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J Immunol Methods 379(1):1–14

    Article  Google Scholar 

  • Reizel Y, Chapal-Ilani N, Adar R, Itzkovitz S, Elbaz J, Maruvka YE, Segev E, Shlush LI, Dekel N, Shapiro E (2011) Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet 7(7):e1002192

    Article  Google Scholar 

  • Resnick SI (1992) Adventures in stochastic processes. Birkhäuser, Boston

    MATH  Google Scholar 

  • Richards JL, Zacharias AL, Walton T, Burdick JT, Murray JI (2013) A quantitative model of normal \(Caenorhabditis elegans\) embryogenesis and its disruption after stress. Dev Biol 374(1):12–23

    Article  Google Scholar 

  • Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190(2):157–168

    Article  Google Scholar 

  • Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498

    Article  Google Scholar 

  • Samuels ML (1971) Distribution of the branching-process population among generations. J Appl Probab 8:655–667

    Article  MathSciNet  MATH  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Shibata D, Navidi W, Salovaara R, Li Z-H, Aaltonen LA (1996) Somatic microsatellite mutations as molecular tumor clocks. Nat Med 2(6):676–681

    Article  Google Scholar 

  • Shibata D, Tavaré S (2006) Counting divisions in a human somatic cell tree. Cell Cycle 5(6):610–614

    Article  Google Scholar 

  • Slebos RJC, Oh DS, Umbach DM, Taylor JA (2002) Mutations in tetranucleotide repeats following DNA damage depend on repeat sequence and carcinogenic agent. Cancer Res 62(21):6052–6060

    Google Scholar 

  • Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70(4):1263–1267

    Article  Google Scholar 

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144

    Article  Google Scholar 

  • Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics, vol 1. Edward Arnold, London

    MATH  Google Scholar 

  • Subramanian VG, Duffy KR, Turner ML, Hodgkin PD (2008) Determining the expected variability of immune responses using the cyton model. J Math Biol 56(6):861–892

    Article  MathSciNet  MATH  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode \(Caenorhabditis elegans\). Dev Biol 100(1):64–119

    Article  Google Scholar 

  • Sun L, Wu X, Han M, Xu T, Zhuang Y (2008) A mitotic recombination system for mouse chromosome 17. Proc Natl Acad Sci USA 105(11):4237–4241

    Article  Google Scholar 

  • Sun JX, Helgason A, Masson G, Ebenesersdottir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson K (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44(10):1161–1165

    Article  Google Scholar 

  • Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81

    Article  Google Scholar 

  • Tsao J-L, Yatabe Y, Salovaara R, Järvinen HJ, Mecklin J-P, Aaltonen LA, Tavaré S, Shibata D (2000) Genetic reconstruction of individual colorectal tumor histories. Proc Natl Acad Sci USA 97(3):1236–1241

    Article  Google Scholar 

  • Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52(4):661–667

    Google Scholar 

  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91(21):9857–9860

    Article  Google Scholar 

  • Wasserstrom A, Frumkin D, Adar R, Itzkovitz S, Stern T, Kaplan S, Shefer G, Shur I, Zangi L, Reizel Y, Harmelin A, Dor Y, Dekel N, Reisner Y, Benayahu D, Tzahor E, Segal E, Shapiro EY (2008) Estimating cell depth from somatic mutations. PLoS Comput Biol 4(5)

  • Weber TS, Jaehnert I, Schichor C, Or-Guil M, Carneiro J (2014) Quantifying the length and variance of the eukaryotic cell cycle phases by a stochastic model and dual nucleoside pulse labelling. Plos Comput Biol 10(7)

  • Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17(4):498–502

    Article  Google Scholar 

  • Zhang B, Dai M, Li Q-J, Zhuang Y (2013) Tracking proliferative history in lymphocyte development with cre-mediated sister chromatid recombination. PLoS Genet 9(10):e1003887, 10

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Søren Asmussen (Aarhus University) for drawing their attention to Asmussen (1998). The work of T.W., L.P. and K.D. was supported by Human Frontier Science Program Grant RGP0060/2012. K.D. was also supported by Science Foundation Ireland Grant 12 IP 1263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken R. Duffy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, T.S., Perié, L. & Duffy, K.R. Inferring average generation via division-linked labeling. J. Math. Biol. 73, 491–523 (2016). https://doi.org/10.1007/s00285-015-0963-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0963-3

Keywords

Mathematics Subject Classification

Navigation