Skip to main content

Advertisement

Log in

Mosaics of Exotic Forest Plantations and Native Forests as Habitat of Pumas

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

There is a general lack of information on the impact of forest plantations and the presence of urban settlements on populations of resource-demanding species such as large felids. To partially address this problem, a project study was conducted to find out whether mosaics of forest plantations and native vegetation can function as an adequate habitat for pumas (Puma concolor) in southern Brazil. The study was conducted within a 1255-km2 area, managed for planted stands of Pinus spp. and Eucalyptus spp. Individual identification of pumas was carried out using a combination of track-matching analysis (discriminant analysis) and camera-trapping. Both techniques recorded closely similar numbers of individual pumas, either total (9–10 individuals) or resident (5–6 individuals). A new approach, developed during this study, was used to individualize pumas by their markings around the muzzle. The estimated density varied from 6.2 to 6.9 individuals/100 km2, ranking among the highest across the entire puma range and indicating a potential total population of up to 87 individuals in the study site. In spite of the availability of extensive areas without human disturbance, a radio-tracked female used a core home range that included forest plantations, an urbanized village, and a two-lane paved road with regular vehicular traffic. The high density of pumas and the species’ intensive use of modified landscapes are interpreted here as deriving from conditions rarely found near human settlements: mutual tolerance by pumas and humans and an adequate habitat (regardless of plantations) largely due to the inhibition of invasions and hunting and maintenance of sizable extents of native forest patches. More widely, it suggests the potential of careful management in forestry operations to provide habitat conditions for resource-demanding species such as the puma. Furthermore, it highlights the importance of curbing invasions and hunting, in this case provided by the presence of company employees, for the maintenance of wildlife populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Athreya V, Belsare A (2006) ‘Carnivore Conflict’: support provided to leopards involved in conflict-related cases in Maharashtra. Wildlife Trust of India, New Delhi

    Google Scholar 

  • Bacha CJC, Barros ALM (2004) Reflorestamento no Brasil: evolução recente e perspectivas para o futuro. Scientia Forestalis 66:191–203

    Google Scholar 

  • Beier P (1991) Cougar attacks on humans in the United States and Canada. Wildlife Society Bulletin 19:403–412

    Google Scholar 

  • Beier P (1995) Dispersal of juvenile cougars in fragmented habitat. Journal of Wildlife Management 59:228–237

    Article  Google Scholar 

  • Belden RC, Frankenberger WB, McBride RT, Schwikert ST (1988) Panther habitat use in southern Florida. Journal of Wildlife Management 52:660–663

    Article  Google Scholar 

  • Carroll C, Noss RF, Paquet PC (2000) Carnivores as focal species for conservation in the rocky mountain region. Ecological Applications 11:961–980

    Article  Google Scholar 

  • Chiarello AG (2000) Conservation value of a native forest fragment in a region of extensive agriculture. Revista Brasileira de Biologia 60(2):37–247

    Article  Google Scholar 

  • Child G (1995) Wildlife and people: the Zimbabwean success. How conflict between animals and people became progress for both. Wisconsin Foundation, New York

    Google Scholar 

  • Comiskey EJ, Bass OL Jr, Gross LJ, McBride RT, Salinas R (2002) Panthers and forests in South Florida: an ecological perspective. Conservation Ecology 6:18. Available from http://www.consecol.org/vol6/iss1/art18

  • Cullen L Jr, Bodmer RE, Pádua CV (2000) Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biological Conservation 95:49–56

    Article  Google Scholar 

  • ECE/FAO (2000) Forest products annual review (1999)–(2000) Timber Bulletin Vol. LIII. UN/ECE Timber Committee

  • Eisenberg JF (1980) The density and biomass of tropical mammals. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary perspective. Sinauer, Sunderland, MA, pp 35–55

    Google Scholar 

  • Emmons LH (1987) Comparative feeding ecology of felids in a neotropical rainforest. Behavioral Ecology and Sociobiology 20:271–283

    Article  Google Scholar 

  • Evans J (1999) Planted forests of the wet and dry tropics: their variety, nature, and significance. New Forests 17:1–3

    Article  Google Scholar 

  • Fitzhugh EL, Gorenzel WP (1985) Design and analysis of mountain lion track surveys. In: Laudenslayer WF Jr (ed) Cal-Neva wildlife. Western Section, The Wildlife Society, California, pp 78–87

    Google Scholar 

  • Fjelline DP, Mansfield TM (1989) Method to standardize the procedure for measuring mountain lion tracks. In: Smith RH (ed) Proceedings of the Third Mountain Lion Workshop, Prescott, AZ, pp 49–51

  • Frankel OH (1983) The place of management and conservation. In: Schonewald-Cox C, Chambers SM, Bruce M, Lawrence T (eds) Genetics and conservation: a reference for managing wild animal populations. Benjamin/Cummings, New York, pp 1–13

    Google Scholar 

  • Franklin WL, Johnson WE, Sarno RJ, Iriarte JA (1999) Ecology of the Patagonia puma Felis concolor patagonica in southern Chile. Biological Conservation 90:33–40

    Article  Google Scholar 

  • Gay SW, Best TL (1996) Age-related variation in skulls of the puma (Puma concolor). Journal of Mammalogy 77:191–198

    Article  Google Scholar 

  • Grigione MM, Burman P, Bleich VC, Pierce BM (1999) Identifying individual mountain lions Felis concolor by their tracks: refinement of an innovative technique. Biological Conservation 88:25–32

    Article  Google Scholar 

  • Harvey MJ, Barbour RW (1965) Home range of Microtus ochrogaster as determined by a modified minimum area method. Journal of Mammalogy 46:398–402

    Article  Google Scholar 

  • IBGE (1992) Guia da vegetação brasileira. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil

  • IUCN (1990) Our common future. IUCN, Gland, Switzerland

    Google Scholar 

  • Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862

    Article  Google Scholar 

  • Karanth KU, Sunquist ME (1992) Population structure, density and biomass of large herbivores in the tropical forests of Nagarahole, India. Journal of Tropical Ecology 8:21–35

    Article  Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS (2004a) Photographic sampling of elusive mammals in tropical forests. In: Thompson WL (ed) Sampling rare or elusive species: concepts and techniques for estimating population parameters. Island Press, Washington, DC, pp 229–247

    Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004b) Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 101(14):4854–4858

    Article  CAS  Google Scholar 

  • Kawanishi K, Sunquist ME (2004) Conservation status of tigers in a primary rainforest of Peninsular Malaysia. Biological Conservation 120:329–344

    Article  Google Scholar 

  • Kelly MJ, Noss AJ, di Bitetti MS, Maffei L, Arispe RL, Paviolo A, de Angelo CD, di Blanco YE (2008) Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. Journal of Mammalogy 89(2):408–418

    Article  Google Scholar 

  • Kenward R, Hodder KH (1995) Ranges V. An analysis system for biological location data. Institute of Terrestrial Ecology, Furzebrook Research Station, Wareham, Dorset, UK

    Google Scholar 

  • Lewison R, Fitzhugh EL, Galentine SP (2001) Validation of a rigorous track classification technique: identifying individual mountain lions. Biological Conservation 99(3):313–321

    Article  Google Scholar 

  • Mac Nab BK (1963) Bioenergetics and the determination of home range size. American Naturalist XCVII(894):133–140

    Google Scholar 

  • Maehr DS (1990) The Florida panther and private lands. Conservation Biology 4:167–170

    Article  Google Scholar 

  • Maffei L, Noss AJ (2008) How small is too small? Camera trap survey areas and density estimates for ocelots in the Bolivian Chaco. Biotropica 40:71–75

    Google Scholar 

  • Maffei L, Cuéllar E, Noss A (2004) One thousand jaguars (Panthera onca) in Bolivia’s Chaco? Camera trapping in the Kaa-Iya National Park. Journal of Zoology (London) 262:295–304

    Article  Google Scholar 

  • Mäher JKF Jr, Schneider M (2003) Ungulados. In: Fontana CS, Bencke GA, Reis RE (eds) Livro Vermelho da Fauna Ameaçada de Extinção no Rio Grande do Sul. Edipucrs, Porto Alegre, Brazil, pp 547–565

    Google Scholar 

  • Mazzolli M (2000) A comparison of habitat use by the mountain lion (Puma concolor) and kodkod (Oncifelis guina) in the southern Neotropics with implications for the assessment of their vulnerability status. MSc thesis, University of Durham, Durham, UK

  • Mazzolli M (2005) Avaliando integridade ambiental e predizendo extinções locais a partir de padrões de desaparecimento da mega-mastofauna atual do sul do Brasil. Proceeding of the III Congresso Brasileiro de Mastozoologia. Aracruz, ES. Sociedade Brasileira de Mastozoologia/UFES, 12–16 October, p 111

  • Mazzolli M (2006) Persistência e riqueza de mamíferos focais em sistemas agropecuários no planalto meridional. PhD Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

  • Mazzolli M (2007) Projeto Puma: studying and conserving puma and jaguar in Brazil. Wild Felid Monitor 1(1):15

    Google Scholar 

  • Mazzolli M (2009) Mountain lion Puma concolor attacks on a maned wolf Chrysocyon brachyurus and a domestic dog in a forestry system. Mastozoologia Neotropical 16(2):465–470

    Google Scholar 

  • Mazzolli M, Graipel ME, Dunstone N (2002) Mountain lion depredation in southern Brazil. Biological Conservation 105:43–51

    Article  Google Scholar 

  • Michalski F, Boulhosa RLP, Faria A, Peres CA (2006) Human-wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Animal Conservation 9:179–188

    Article  Google Scholar 

  • Mishra C (1997) Livestock depredation by large carnivores in the Indian trans-Himalaya: conflict perceptions and conservation prospects. Environmental Conservation 24:338–343

    Article  Google Scholar 

  • Neu CW, Byers CR, Peek JM (1974) A technique for analysis of utilization: availability data. Journal of Wildlife Management 38(3):541–545

    Article  Google Scholar 

  • Norton P (1984) Leopard conservation in South Africa. African Wildlife 38:191–196

    Google Scholar 

  • Norton PM, Henley SR (1987) Home range and movements of male leopards in the Cedarberg Wilderness Area, Cape Province. South African Journal of Wildlife Research 17:41–48

    Google Scholar 

  • Nowell K, Jackson P (1996) Status, survey and conservation action plan, wild cats. IUCN, Gland, Switzerland

    Google Scholar 

  • Nyhus PJ, Tilson R (2004) Characterizing human–tiger conflict in Sumatra, Indonesia: implications for conservation. Oryx 38:68–74

    Article  Google Scholar 

  • Oli MK, Taylor IR, Rogers ME (1994) Snow leopard (Panthera uncia) predation of livestock: an assessment of local perceptions in the Annapurna Conservation Area, Nepal. Biological Conservation 68:63–68

    Article  Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildlife Monographs 62, The Wildlife Society, Lawrence, KS

  • Palmberg-Lerche C, Iversen PA, Sigaud P (2002) Forest genetic resources. Forest Genetic Resources Bulletin 29. FAO, Rome

  • Palmeira FBL, W Barrella (2007) Conflicts caused by predation on domestic livestock by large cats in quilombola communities in the Atlantic Forest. Biota Neotropical 7 (online). Available from http://www.scielo.br

  • Peres CA (1996) Population status of white-lipped Tayassu pecari and collared peccaries T. tajacu in hunted and unhunted Amazonian forests. Biological Conservation 77:115–123

    Article  Google Scholar 

  • Pierce BM, Bleich VC, Wehausen JD, Bowyer RT (1999) Migratory patterns of mountain lions: implications for social regulation and conservation. Journal of Mammalogy 80(3):986–992

    Article  Google Scholar 

  • Pillar VD, Boldrini II, Hasenack H, Jacques AVA, Both R, Müller SC, Eggers L, Fidelis A, Santos MMG, Oliveira JM, Cerveira J, Blanco C, Joner F, Cordeiro JL, Pinillos Galindo M (2006) Workshop “Estado atual e desafios para a conservação dos campos.” Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. Available from http://ecoqua.ecologia.ufrgs.br. Accessed 14 July 2007

  • Quigley HB, Crawshaw PG Jr (1992) A conservation plan for the jaguar Panthera onca in the Pantanal region of Brazil. Biological Conservation 61:149–157

    Article  Google Scholar 

  • Rabinowitz AR (1986) Jaguar predation on domestic livestock in Belize. Wildlife Society Bulletin 14:170–174

    Google Scholar 

  • Rextad E, Burnham KP (1991) User’s guide for interactive program CAPTURE. Abundance estimation of closed animal populations. Colorado State University, Boulder

    Google Scholar 

  • Riley SJ, Malecki RA (2001) A landscape analysis of cougar distribution and abundance in Montana, USA. Environmental Management 28:317–323

    Article  CAS  Google Scholar 

  • Robinson JG, Redford KH (1986) Body size, diet, and population density of neotropical forest mammals. American Naturalist 128(5):665–680

    Article  Google Scholar 

  • Safford HD (1999) Brazilian Páramos I. An introduction to the physical environments and vegetation of the campos de altitude. Journal of Biogeography 26:693–712

    Article  Google Scholar 

  • Schaller GB (1972) The Serengeti lion, a study of predator–prey relations. University of Chicago Press, Chicago

    Google Scholar 

  • Schaller GB (1983) Mammals and their biomass on a Brazilian ranch. Arquivos de Zoologia 31:1–36

    Google Scholar 

  • Seidensticker J, Sunquist ME, McDougal C (1990) Leopards living at the edge of the Royal Chitwan National Park Nepal. In: Daniel JC, Serrao JS (eds) Conservation in developing countries: problems and prospects. Proceedings of the centenary seminar of the Bombay Natural History Society. Bombay Natural History Society and Oxford University Press, Oxford, pp 415–423

    Google Scholar 

  • Silveira L (2004) Ecologia comparada e conservação da onça-pintada (Panthera onca) e onça-parda (Puma concolor) no cerrado e pantanal. PhD thesis, Universidade de Brasília

  • Silver SC, Ostro LET, Marsh LK, Maffei L, Noss AJ, Kelly MJ, Wallace RB, Gómez H, Ayala G (2004) The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2):148–154

    Article  Google Scholar 

  • Smallwood KS, Fitzhugh EL (1993) A rigorous technique for identifying individual mountain lions Felis concolor by their tracks. Biological Conservation 65:51–59

    Article  Google Scholar 

  • Smallwood KS, Schonewald C (1998) Study design and interpretation of mammalian carnivore density estimates. Oecologia 113:474–491

    Article  Google Scholar 

  • Soisalo MK, Cavalcanti SMC (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biological Conservation 129:487–496

    Article  Google Scholar 

  • Spalton JA, al Hikmani HM, Willis D, Said ASB (2006) Critically Endangered Arabian leopards Panthera pardus nimr persist in the Jabal Samhan Nature Reserve, Oman. Oryx 40(3):287–294

    Article  Google Scholar 

  • Stickel LF (1954) A comparison of certain methods of measuring ranges of small mammals. Journal of Mammalogy 35:1–15

    Article  Google Scholar 

  • Taylor VJ, Dunstone N (1996) The exploitation of mammal populations. Chapman & Hall, London

    Google Scholar 

  • Trolle M, Noss AJ, Lima E de S, Dalponte JC (2007) Camera-trap studies of maned wolf density in the Cerrado and the Pantanal of Brazil. Biodiversity and Conservation 16:1197–1204

    Article  Google Scholar 

  • Wallace RB, Gomez H, Ayala G, Espinoza F (2003) Camera trapping for jaguar (Panthera onca) in the Tuichi Valley, Bolivia. Mastozoologia Neotropical 10:133–139

    Google Scholar 

  • White GC, Garrot RA (1990) Analysis of wildlife radio-tracking data. Academic Press, San Diego, CA

    Google Scholar 

  • Wiegand T, Moloney KA, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. American Naturalist 154:605–627

    Article  Google Scholar 

  • Worton BJ (1989) Comparison of several probabilistic home-range models. Journal of Wildlife Management 39:118–123

    Google Scholar 

  • WWF(Wildlife Fund for Nature) (1996) Forests for life: The WWF/IUCN forest policy book. WWF, Godalming, UK

    Google Scholar 

Download references

Acknowledgements

I am indebted to Marcella J. Kelly for her invaluable help in improving the manuscript and to Laurence Mackin for spell-check and grammar corrections. In chronological order, the project started with the commitment from the Klabin Paper Company in southern Brazil to support research on its land. Several persons were involved at this stage. Ralf Andreas Berndt gave initial support for the project. Paulo Kikuti and other executive directors, including Raul M. Speltz, approved and supported the project during the course of the study. The Park staff provided help with traps, including Sérgio A. Filipak, Alceu B. Mello, Lauredi J. Mello, Donizete L. Bueno, Anastácio T. de Oliveira, and Eliane F. Leite. GIS maps of the study area were kindly provided by Nilton L. Venturi. Eliane F. Young Blood helped with the company’s library. Assistance in data collection and veterinarian support was provided by Catherine B. Ryan. Many memorable moments were spent on the trail accompanied by my very enthusiastic 3-year old-daughter Kimberly. Part of the analysis in this article was conducted in the United Kingom when I was writing my MSc thesis. The UK Foreign Office and the British Council provided me with a Chevening scholarship, and I am particularly grateful to Ann Lipe and Judith Elliot of the UK British Council. I am also indebted to my then supervisor, Dr. Nigel Dunstone, for helping me with the thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Mazzolli.

Appendices

Appendix 1

Tables with classification results from discriminant analysis of puma tracks for each paw (right front, left front, right hind, left hind). Groups are in rows and predicted groups are in columns. Track sets that rated above 75% were assigned to their own group. The remaining track sets were combined with other groups according to predicted values in columns.

Groups

Predicted groups

 

3

4

9

12

14

19

27

28

29

31

N

Right front

 3

71,43

0

0

28,57

0

0

0

0

0

0

7

 4

0

90

0

0

0

0

10

0

0

0

10

 9

10

0

80

10

0

0

0

0

0

0

10

 12

0

0

0

100

0

0

0

0

0

0

4

 14

0

0

0

0

80

0

20

0

0

0

5

 19

0

0

0

0

20

60

0

0

20

0

5

 27

0

0

0

0

0

33,33

66,67

0

0

0

3

 28

0

0

0

0

0

20

0

80

0

0

5

 29

0

0

0

0

25

0

0

25

50

0

4

 31

0

0

16,67

0

16,67

0

0

16,67

0

50

6

Groups

Predicted groups

 

3

4

5

9

12

13

28

29

N

Left front

 3

100

0

0

0

0

0

0

0

8

 4

0

92,31

0

0

7,69

0

0

0

13

 5

0

0

100

0

0

0

0

0

4

 9

0

0

0

50

25

25

0

0

4

 12

0

0

0

0

77,78

22,22

0

0

9

 13

0

0

0

33,33

0

66,67

0

0

3

 28

0

0

0

0

0

0

100

0

5

 29

0

0

33,33

0

0

0

0

66,67

3

Groups

Predicted groups

 

1

2

3

4

9

12

28

29

31

N

Right hind

 1

80

0

0

0

0

0

0

0

20

5

 2

0

100

0

0

0

0

0

0

0

4

 3

0

0

83,33

0

0

16,67

0

0

0

6

 4

0

0

0

90

10

0

0

0

0

10

 9

0

0

0

0

75

25

0

0

0

8

 12

0

0

14,29

0

14,29

42,86

28,57

0

0

7

 28

20

0

0

0

0

0

80

0

0

5

 29

0

0

0

0

0

0

40

60

0

5

 31

0

0

0

0

0

0

0

25

75

4

Groups

Predicted groups

 

1

3

4

9

10

12

28

29

36

Left hind

 1

80

0

0

0

0

0

0

0

0

 3

0

66,67

0

16,67

0

16,67

0

0

0

 4

0

0

100

0

0

0

0

0

0

 9

0

0

0

85,71

14,29

0

0

0

0

 10

0

0

0

20

80

0

0

0

0

 12

0

22,22

0

11,11

0

66,67

0

0

0

 28

0

0

0

0

0

0

100

0

0

 29

0

0

0

0

0

0

0

83,33

0

Appendix 2

Statistics of habitat use by forest cover, using χ2 and Bonferroni (α = 0.10) intervals of confidence. Habitats are native vegetation (forest predominant) and plantations of pinus, eucalyptus, and araucaria. The proportion of available area (pi 0) is compared with the theoretical proportion of occurrence (pi) to determine if the hypothesis is accepted or rejected, (i.e., pi = pi 0). If pi 0 > pi, the species is using the habitat (k) less than expected; if pi 0 < pi, it is using the habitat more than expected.

Species

Habitat (k)

Proportion of available area (pi 0)

No. observed

No. expected

χ2

Proportion observed in each area (pi)

Confidence interval on proportion of occurrence (pi)

Habitat selection

Capybara (groups)

 

Native vegetation

0.41

13

11

0

0.46

0.35 ≤ p 1 ≤ 0.58

=

 

Pinus

0.37

14

10

1

0.50

0.39 ≤ p 2 ≤ 0.61

+

 

Eucalyptus

0.16

1

4

3

0.04

0.00 ≤ p 3 ≤ 0.08

 

Araucaria

0.07

0

2

2

0.00

0.00 ≤ p 4 ≤ 0.17

=

Coati (groups)

 

Native vegetation

0.41

103

125

4

0.34

0.30 ≤ p 5 ≤ 0.37

 

Pinus

0.37

153

112

15

0.50

0.46 ≤ p 6 ≤ 0.53

+

 

Eucalyptus

0.16

38

48

2

0.12

0.10 ≤ p 7 ≤ 0.15

 

Araucaria

0.07

13

20

3

0.04

0.03 ≤ p 8 ≤ 0.06

Collared peccary (groups)

 

Native vegetation

0.41

153

198

10

0.32

0.29 ≤ p 9 ≤ 0.34

 

Pinus

0.37

225

178

13

0.46

0.44 ≤ p 10 ≤ 0.49

+

 

Eucalyptus

0.16

64

75

2

0.13

0.11 ≤ p 11 ≤ 0.15

 

Araucaria

0.07

43

32

4

0.09

0.07 ≤ p 12 ≤ 0.10

=

Grey brocket deer

 

Native vegetation

0.41

104

402

221

0.11

0.09 ≤ p 13 ≤ 0.12

 

Pinus

0.37

495

355

50

0.50

0.48 ≤ p 14 ≤ 0.52

+

 

Eucalyptus

0.16

304

153

150

0.31

0.29 ≤ p 15 ≤ 0.33

+

 

Araucaria

0.07

83

80

5

0.08

0.07 ≤ p 16 ≤ 0.09

=

Nine-banded armadillo

 

Native vegetation

0.41

22

35

5

0.20

0.20 ≤ p 17 ≤ 0.31

 

Pinus

0.37

42

31

4

0.43

0.43 ≤ p 18 ≤ 0.56

+

 

Eucalyptus

0.16

14

13

0.05

0.12

0.12 ≤ p 19 ≤ 0.21

=

 

Araucaria

0.07

7

6

0.34

0.05

0.05 ≤ p 20 ≤ 0.12

=

Prehensile-tailed porcupine

 

Native vegetation

0.41

11

13

0

0.33

0.24 ≤ p 21 ≤ 0.43

=

 

Pinus

0.37

15

12

1

0.45

0.35 ≤ p 22 ≤ 0.56

=

 

Eucalyptus

0.16

6

5

0

0.18

0.10 ≤ p 23 ≤ 0.26

=

 

Araucaria

0.07

1

2

1

0.03

0.00 ≤ p 24 ≤ 0.07

=

White-lipped peccary (groups)

 

Native vegetation

0.41

92

116

5

0.32

0.29 ≤ p 25 ≤ 0.36

 

Pinus

0.37

101

104

0

0.36

0.32 ≤ p 26 ≤ 0.39

=

 

Eucalyptus

0.16

51

44

1

0.15

0.03 ≤ p 27 ≤ 0.21

=

 

Araucaria

0.07

40

19

24

0.14

0.12 ≤ p 28 ≤ 0.17

+

Statistics of habitat use by blocks, using χ2 and Bonferroni (α = 0.10) intervals of confidence. Block 1 contained 60–69% of natural forest, block 2 contained 50–59%, block 3 contained 40–49%, and block 4 contained only 20–39% natural forest. The proportion of available area (pi 0) is compared with the theoretical proportion of occurrence (pi) to determine if the hypothesis is accepted or rejected (i.e., pi = pi 0). If pi 0 > pi, the species is using the blocks (k) less than expected; if pi 0 < pi, it is using more than expected.

 

Species

Habitat (k)

Proportion of available area (pi 0)

No. observed

No. expected

χ2

Proportion observed in each area (pi)

Confidence interval on proportion of occurrence (pi)

Habitat selection

Capybara (groups)

 

Block 1

0.23

17

5

26

0.74

0.35 ≤ p 1 ≤ 0.58

+

 

Block 2

0.40

6

9

1

0.26

0.39 ≤ p 2 ≤ 0.61

=

 

Block 4

0.37

0

9

9

0.00

0.00 ≤ p 3 ≤ 0.08

Coati (groups)

 

Block 1

0.23

45

29

9

0.36

0.27 ≤ p 4 ≤ 0.44

+

 

Block 2

0.40

57

50

1

0.45

0.36 ≤ p 5 ≤ 0.54

=

 

Block 4

0.37

24

47

11

0.19

0.12 ≤ p 6 ≤ 0.26

Collared peccary (groups)

 

Block 1

0.23

53

42

3

0.29

0.25 ≤ p 7 ≤ 0.32

+

 

Block 2

0.40

36

74

19

0.20

0.17 ≤ p 8 ≤ 0.22

 

Block 4

0.37

95

68

10

0.52

0.48 ≤ p 9 ≤ 0.55

+

Grey brocket deer

 

Block 1

0.23

116

102

2

0.26

0.24 ≤ p 10 ≤ 0.28

=

 

Block 2

0.40

175

178

0

0.39

0.37 ≤ p 11 ≤ 0.42

=

 

Block 4

0.37

155

165

1

0.35

0.32 ≤ p 12 ≤ 0.37

=

Nine-banded armadillo

 

Block 1

0.23

10

5

5

0.45

0.35 ≤ p 17 ≤ 0.56

+

 

Block 2

0.40

11

9

1

0.50

0.39 ≤ p 18 ≤ 0.61

=

 

Block 4

0.37

1

8

6

0.05

0.00 ≤ p 19 ≤ 0.09

Prehensile-tailed porcupine

 

Block 1 and 2

0.52

8

9

0

0.47

0.35 ≤ p 20 ≤ 0.59

=

 

Block 3 and 4

0.48

9

8

0

0.53

0.41 ≤ p 21 ≤ 0.65

=

White-lipped peccary (groups)

 

Block 1

0.23

33

22

5

0.14

0.11 ≤ p 22 ≤ 0.17

=

 

Block 2

0.40

42

38

0

0.18

0.15 ≤ p 23 ≤ 0.21

=

 

Block 4

0.37

43

36

1

0.15

0.18 ≤ p 24 ≤ 0.21

+

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzolli, M. Mosaics of Exotic Forest Plantations and Native Forests as Habitat of Pumas. Environmental Management 46, 237–253 (2010). https://doi.org/10.1007/s00267-010-9528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-010-9528-9

Keywords

Navigation