Skip to main content
Log in

Bubble Divergences from Twisted Cohomology

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang-Mills theory and 3d Riemannian quantum gravity, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined because of a phenomenon known as ‘bubble divergences’. In this paper, we extend recent results of the authors to the cases where these divergences cannot be understood in terms of cellular cohomology. We introduce in its place the relevant twisted cohomology, and use it to compute the divergence degree of the partition function. We also relate its dominant part to the Reidemeister torsion of the complex, thereby generalizing previous results of Barrett and Naish-Guzman. The main limitation to our approach is the presence of singularities in the representation variety of the fundamental group of the complex; we illustrate this issue in the well-known case of two-dimensional manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Thiemann T.: Modern canonical quantum general relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  3. Baez J.C.: An introduction to spin foam models of BF theory and quantum gravity. Lect. Notes Phys. 543, 25–94 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. Perez, A.: The spin-foam-representation of loop quantum gravity. 2006, http://arxiv.org/abs/gr-qc/0601095dv1, 2006

  5. Freidel L., Krasnov K.: Spin foam models and the classical action principle. Adv. Theor. Math. Phys. 2, 1183–1247 (1999)

    MathSciNet  Google Scholar 

  6. Plebanski J.F.: On the separation of Einsteinian substructures. J. Math. Phys. 18, 2511–2520 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Engle J., Pereira R., Rovelli C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251–290 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Freidel L., Krasnov K.: A New Spin Foam Model for 4d Gravity. Class. Quant. Grav. 25, 125018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. Ponzano, G., Regge, T.: Semi-classical limit of Racah coefficients. Spectroscopic and group theoretical methods in physics (F. Bloch, ed.), Amsterdam: North-Holland, 1968

  10. Perez A., Rovelli C.: A spin foam model without bubble divergences. Nucl. Phys. B 599, 255–282 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Freidel L., Louapre D.: Diffeomorphisms and spin foam models. Nucl. Phys. B 662(1–2), 279–298 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Freidel L., Gurau R., Oriti D.: Group field theory renormalization - the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009)

    Article  ADS  Google Scholar 

  13. Ben Geloun J., Krajewski T., Magnen J., Rivasseau V.: Linearized Group Field Theory and Power Counting Theorems. 2010, http://arxiv.org/abs/1002.3592dv1[hep-th], 2010

  14. Bonzom V., Smerlak M.: Bubble divergences from cellular homology. Lett. Math. Phys. 93(3), 295–305 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Witten E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153–209 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Goldman W.: The symplectic nature of fundamental groups. Adv. Math. 54, 200 (1984)

    Article  MATH  Google Scholar 

  17. Turaev V.G., Viro O.Y.: State sum invariants of 3 manifolds and quantum 6j symbols. Topology 31, 865–902 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crane L., Kauffman L.H., Yetter D.: Evaluating the Crane-Yetter invariant. 1993, http://arxiv.org/abs/hep-th/9309063dv1, 1993

  19. Boulatov D.V.: A Model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629–1646 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ooguri H.: Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799–2810 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Freidel L.: Group field theory: An overview. Int. J. Theor. Phys. 44, 1769–1783 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oriti D.: The group field theory approach to quantum gravity. 2006, http://arxiv.org/abs/gr-qc/0607032dv3, 2006

  23. Barrett J.W., Naish-Guzman I.: The Ponzano-Regge model. Class. Quant. Grav. 26, 155014 (2009)

    Article  ADS  Google Scholar 

  24. Hog-Angeloni, C., Metzler, W., Sieradski, A.J. (eds.): Two-Dimensional Homotopy and Combinatorial Group Theory. London Mathematical Society Lecture Notes Series, Cambridge: Cambridge University Press, 1994

  25. Blau M., Thompson G.: Topological gauge theories of antisymmetric tensor fields. Annals Phys. 205, 130–172 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Gurau R.: Colored Group Field Theory. Commun. Math. Phys. 304, 69–93 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Forman R.: Small volume limits of 2-d Yang-Mills. Commun. Math. Phys. 151, 39–52 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Plflaum, M.J.: Analytic and Geometric Study of Stratified Spaces. Lecture Notes in Mathematics 1768, Berlin: Springer, 2001

  29. Atiyah M.F., Bott R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. Roy. Soc. Lond. A 308, 523–615 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  30. Sengupta A.: The volume measure for flat connections as limit of the Yang-Mills measure. J. Geom. Phys. 47(4), 398–426 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Witten E.: Topology-changing amplitudes in (2+1)-dimensional gravity. Nucl. Phys. B 323, 113–140 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  32. Gegenberg J., Kunstatter G.: The Partition function for topological field theories. Ann. Phys. 231, 270–289 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Dubois J.: Private communication

  34. Turaev V.: Introduction to combinatorial torsions. Basel-Boston: Birkhauser, 2001

  35. Cassanas R.: Unpublished notes

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Smerlak.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonzom, V., Smerlak, M. Bubble Divergences from Twisted Cohomology. Commun. Math. Phys. 312, 399–426 (2012). https://doi.org/10.1007/s00220-012-1477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1477-0

Keywords

Navigation