Skip to main content
Log in

Characterization of the type III export signal of the flagellar hook scaffolding protein FlgD of Escherichia coli

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Transport of flagellar structural proteins beyond the cytoplasmic membrane is accomplished by a type III secretory pathway [flagellar type III secretion system (fTTSS)]. The mechanism of substrate recognition by the fTTSS is still enigmatic. Using the hook scaffolding protein FlgD of Escherichia coli as a model substrate, it is demonstrated that the export signal is contained within the N-terminal 71 amino acids of FlgD. Analysis of frame-shift mutations and alterations of the nucleotide sequence suggest a proteinaceous nature of the signal. Furthermore, the physicochemical properties of the first about eight amino acids are crucial for export.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BCIP:

5-Bromo-4-chloro-3-indolyl phosphate

ICDH:

Isocitrate dehydrogenase

IPTG:

Isopropyl 1-thio-β-d-galactopyranoside

LB:

Luria-Bertani broth

PAGE:

Polyacrylamide gel electrophoresis

pNPP:

p-Nitrophenyl phosphate

SDS:

Sodium dodecyl sulfate

TTSS:

Type III secretion system

fTTSS:

Flagellar TTSS

References

  • Aizawa SI (2001) Bacterial flagella and type III secretion systems. FEMS Microbiol Lett 202:157–164

    Article  PubMed  CAS  Google Scholar 

  • Akeda Y, Galán JE (2005) Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915

    Article  PubMed  CAS  Google Scholar 

  • Aldridge P, Hughes KT (2001) How and when are substrates selected for type III secretion? Trends Microbiol 9:209–214

    Article  PubMed  CAS  Google Scholar 

  • Anderson DM, Schneewind O (1999) Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol Microbiol 31:1139–1148

    Article  PubMed  CAS  Google Scholar 

  • Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557

    PubMed  CAS  Google Scholar 

  • Bennett JC, Hughes C (2000) From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol 8:202–204

    Article  PubMed  CAS  Google Scholar 

  • Boyd AP, Lambermont I, Cornelis GR (2000) Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J Bacteriol 182:4811–4821

    Article  PubMed  CAS  Google Scholar 

  • Calamia J, Manoil C (1990) Lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc Natl Acad Sci USA 87:4937–4941

    Article  PubMed  CAS  Google Scholar 

  • Cornelis GR (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252:1–10

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Fan F, Ohnishi K, Francis NR, Macnab RM (1997) The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body. Mol Microbiol 26:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Feldman MF, Cornelis GR (2003) The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol Lett 219:151–158

    Article  PubMed  CAS  Google Scholar 

  • Fraser GM, Gonzalez-Pedrajo B, Tame JR, Macnab RM (2003) Interactions of FliJ with the Salmonella type III flagellar export apparatus. J Bacteriol 185:5546–5554

    Article  PubMed  CAS  Google Scholar 

  • Gentschev I, Dietrich G, Goebel W (2002) The E.coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol 10:39–45

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Minamino T, Namba K, Macnab RM (2003) Substrate specificity classes and the recognition signal for Salmonella type III flagellar export. J Bacteriol 185:2485–2492

    Article  PubMed  CAS  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    PubMed  CAS  Google Scholar 

  • Jung H, Rübenhagen R, Tebbe S, Leifker K, Tholema N, Quick M, Schmid R (1998) Topology of the Na+/proline transporter of Escherichia coli. J Biol Chem 273:26400–26407

    Article  PubMed  CAS  Google Scholar 

  • Karavolos MH, Roe AJ, Wilson M, Henderson J, Lee JJ, Gally DL, Khan CM (2005) Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence. J Bacteriol 187:1559–1567

    Article  PubMed  CAS  Google Scholar 

  • Kornacker MG, Newton A (1994) Information essential for cell-cycle-dependent secretion of the 591-residue Caulobacter hook protein is confined to a 21-amino-acid sequence near the N-terminus. Mol Microbiol 14:73–85

    PubMed  CAS  Google Scholar 

  • Kutsukake K, Doi H (1994) Nucleotide sequence of the flgD gene of Salmonella typhimurium which is essential for flagellar hook formation. Biochim Biophys Acta 1218:443–446

    PubMed  CAS  Google Scholar 

  • Kuwajima G, Kawagishi I, Homma M, Asaka J, Kondo E, Macnab RM (1989) Export of an N-terminal fragment of Escherichia coli flagellin by a flagellum-specific pathway. Proc Natl Acad Sci USA 86:4953–4957

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Galán JE (2004) Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51:483–495

    Article  PubMed  CAS  Google Scholar 

  • Lloyd SA, Forsberg A, Wolf-Watz H, Francis MS (2001a) Targeting exported substrates to the Yersinia TTSS: different functions for different signals? Trends Microbiol 9:367–371

    Article  CAS  Google Scholar 

  • Lloyd SA, Norman M, Rosqvist R, Wolf-Watz H (2001b) Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 39:520–531

    Article  CAS  Google Scholar 

  • Lloyd SA, Sjostrom M, Andersson S, Wolf-Watz H (2002) Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol Microbiol 43:51–59

    Article  PubMed  CAS  Google Scholar 

  • Macnab RM (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181:7149–7153

    PubMed  CAS  Google Scholar 

  • Macnab RM (2004) Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694:207–217

    Article  PubMed  CAS  Google Scholar 

  • Manoil C, Mekalanos JJ, Beckwith J (1990) Alkaline phosphatase fusions: sensors of subcellular location. J Bacteriol 172:515–518

    PubMed  CAS  Google Scholar 

  • Michaelis S, Inouye H, Oliver D, Beckwith J (1983) Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J Bacteriol 154:366–374

    PubMed  CAS  Google Scholar 

  • Michaelis S, Hunt JF, Beckwith J (1986) Effects of signal sequence mutations on the kinetics of alkaline phosphatase export to the periplasm in Escherichia coli. J Bacteriol 167:160–167

    PubMed  CAS  Google Scholar 

  • Michiels T, Cornelis GR (1991) Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol 173:1677–1685

    PubMed  CAS  Google Scholar 

  • Minamino T, Macnab RM (1999) Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181:1388–1394

    PubMed  CAS  Google Scholar 

  • Minamino T, Namba K (2004) Self-assembly and type III protein export of the bacterial flagellum. J Mol Microbiol Biotechnol 7:5–17

    Article  PubMed  CAS  Google Scholar 

  • Minamino T, Gonzalez-Pedrajo B, Yamaguchi K, Aizawa SI, Macnab RM (1999) FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol Microbiol 34:295–304

    Article  PubMed  CAS  Google Scholar 

  • Mudgett MB, Chesnokova O, Dahlbeck D, Clark ET, Rossier O, Bonas U, Staskawicz BJ (2000) Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci USA 97:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Ramamurthi KS, Schneewind O (2002) Yersinia enterocolitica type III secretion: mutational analysis of the yopQ secretion signal. J Bacteriol 184:3321–3328

    Article  PubMed  CAS  Google Scholar 

  • Ramamurthi KS, Schneewind O (2003) Substrate recognition by the Yersinia type III protein secretion machinery. Mol Microbiol 50:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Ramamurthi KS, Schneewind O (2005) A synonymous mutation in Yersinia enterocolitica yopE affects the function of the YopE type III secretion signal. J Bacteriol 187:707–715

    Article  PubMed  CAS  Google Scholar 

  • Russmann H, Kubori T, Sauer J, Galán JE (2002) Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein. Mol Microbiol 46:769–779

    Article  PubMed  CAS  Google Scholar 

  • Schechter LM, Roberts KA, Jamir Y, Alfano JR, Collmer A (2004) Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol 186:543–555

    Article  PubMed  CAS  Google Scholar 

  • Schesser K, Frithz-Lindsten E, Wolf-Watz H (1996) Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes. J Bacteriol 178:7227–7233

    PubMed  CAS  Google Scholar 

  • Sory MP, Boland A, Lambermont I, Cornelis GR (1995) Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc Natl Acad Sci USA 92:11998–12002

    Article  PubMed  CAS  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) Isocitrate dehydrogenase. Meth Enzymol 10:448–463

    Article  CAS  Google Scholar 

  • Vrontou E, Economou A (2004) Structure and function of SecA, the preprotein translocase nanomotor. Biochim Biophys Acta 1694:67–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Silvia Wagner for technical assistance. This work was financially supported by the Deutsche Forschungsgemeinschaft (Ju333/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber-Sparenberg, C., Pöplau, P., Brookman, H. et al. Characterization of the type III export signal of the flagellar hook scaffolding protein FlgD of Escherichia coli . Arch Microbiol 186, 307–316 (2006). https://doi.org/10.1007/s00203-006-0146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0146-0

Keywords

Navigation