Skip to main content
Log in

Genetic mapping of the Leptosphaeria maculans avirulence gene corresponding to the LepR1 resistance gene of Brassica napus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

AvrLepR1 of the fungal pathogen Leptosphaeria maculans is the avirulence gene that corresponds to Brassica LepR1, a plant gene controlling dominant, race-specific resistance to this pathogen. An in vitro cross between the virulent L. maculans isolate, 87-41, and the avirulent isolate, 99-56, was performed in order to map the AvrLepR1 gene. The disease reactions of the 94 of the resulting F1 progenies were tested on the canola line ddm-12-6s-1, which carries LepR1. There were 44 avirulent progenies and 50 virulent progenies suggesting a 1:1 segregation ratio and that the avirulence of 99-56 on ddm-12-6s-1 is controlled by a single gene. Tetrad analysis also indicated a 1:1 segregation ratio. The AvrLepR1 gene was positioned on a genetic map of L. maculans relative to 259 sequence-related amplified polymorphism (SRAP) markers, two cloned avirulence genes (AvrLm1 and AvrLm4-7) and the mating type locus (MAT1). The genetic map consisted of 36 linkage groups, ranging in size from 13.1 to 163.7 cM, and spanned a total of 2,076.4 cM. The AvrLepR1 locus was mapped to linkage group 4, in the 13.1 cM interval flanked by the SRAP markers SBG49-110 and FT161-223. The AvrLm4-7 locus was also positioned on linkage group 4, close to but distinct from the AvrLepR1 locus, in the 5.4 cM interval flanked by FT161-223 and P1314-300. This work will make possible the further characterization and map-based cloning of AvrLepR1. A combination of genetic mapping and pathogenicity tests demonstrated that AvrLepR1 is different from each of the L. maculans avirulence genes that have been characterized previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ansan-Melayah D, Balesdent DM, Buee M, Rouxel T (1995) Genetic characterization of AvrLm1, the first avirulence gene of Leptosphaeria maculans. Phytopathology 85:1525–1529

    Article  CAS  Google Scholar 

  • Ansan-Melayah D, Balesdent MH, Delorume R, Pilet ML, Tanguy X, Renard M, Rouxel T (1998) Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breed 117:373–378

    Article  Google Scholar 

  • Balesdent MH, Attard A, Ansan-Melayah D, Rouxel T (2001) Genetic control and host range of avirulence towards Brassica napus cvs. Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology 91:70–76

    Article  PubMed  CAS  Google Scholar 

  • Balesdent MH, Attard A, Kuhn ML, Rouxel T (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology 92:1122–1133

    Article  PubMed  CAS  Google Scholar 

  • Balesdent MH, Barbetti MJ, Hua L, Sivasithamparam K, Gout L, Rouxel T (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology 95:1061–1071

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Fernando WGD (2006) Induced resistance to blackleg (Leptosphaeria maculans) disease of canola (Brassica napus) caused by a weakly virulent isolate of Leptosphaeria biglobosa. Plant Dis 90:1059–1064

    Article  Google Scholar 

  • Cozijnsen AJ, Howlett BJ (2003) Characterization of the mating-type locus of the plant pathogenic ascomycete Leptosphaeria maculans. Curr Genet 43:351–357

    Article  PubMed  CAS  Google Scholar 

  • Cozijnsen AJ, Popa KM, Purwantara A, Rolls BD, Howlett BJ (2000) Genome analysis of the plant pathogenic ascomycets Leptosphaeria maculans; mapping mating type and host specificity loci. Mol Plant Pathol 1:293–302

    Article  PubMed  CAS  Google Scholar 

  • Crouch JH (1994) Resistance to Leptosphaeria maculans (Desm.) Ces. & de Not. In Brassica L. Dissertation, University of East Anglia

  • Delorume R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdant MH (2004) A cluster of major specific resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Des.) Ces. Et de Not.] in canola (Brassica napus L.). Theor Appl Genet 91:1190–1194

    Google Scholar 

  • Dion Y, Gugel RK, Rakow GFW, Séguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to blackleg disease [causal agent, Leptosphaeria maculans (Desm) Ces et de Not] in canola (Brassica napus L.). Theor Appl Genet 91:190–1194

    Article  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16:755–768

    Article  PubMed  CAS  Google Scholar 

  • Dusabenyagasani M, Fernando WGD (2008) Development of a SCAR marker to track canola resistance against blackleg caused by Leptosphaeria maculans pathogenicity group 3. Plant Dis 92:903–908

    Article  CAS  Google Scholar 

  • Fernando WGD, Dusabenyagasani M, Guo XW, Ahmed H, McCallum B (2006) Genetic diversity of Gibberella zeae isolates from Manitoba. Plant Dis 90:1337–1342

    Article  CAS  Google Scholar 

  • Ferreria M, Rimmer SR, Williams P, Osborn T (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217

    Article  Google Scholar 

  • Ferriol M, Pico B, Nuez F (2003) Genetic diversity of germplasm collection of Cucúrbita pepo using SRAP and AFLP marker. Theor Appl Genet 107:271–282

    Article  PubMed  CAS  Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stems canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Balesdent MH, Rouxel T (2007) Heterochromatin-Like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol Plant Microbe Interact 20:459–470

    Article  PubMed  CAS  Google Scholar 

  • Gall C, Balesdent MH, Robin P, Rouxel T (1994) Tetrad analysis of acid phosphate, soluble protein patterns, and mating type in Leptosphaeria maculans. Phytopathology 84:1299–1305

    Article  CAS  Google Scholar 

  • Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel T (2006) Lost in the middle of nowhere: The AvrLm1 avirulence gene of the Dothideomycetes Leptosphaeria maculans. Mol Microb 60:67–80

    Article  CAS  Google Scholar 

  • Kema GHJ, Goodwin SB, Hamza S, Verstappen ECP, Cavaletto JR, Van der Lee T, de Weerdt M, Bonants PJM, Waalwijk C (2002) A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic linkage map of Mycosphaerella graminicola, the Septoria tritici leaf blotch pathogen of wheat. Genetics 161:1479–1505

    Google Scholar 

  • Kosambi D (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kuhn ML, Gout L, Howlett BJ, Melayah D, Meyer M, Balesdent MH, Rouxel T (2006) Genetic linkage maps and genomic organization in Leptosphaeria maculans. Eur J Plant Pathol 114:17–31

    Article  CAS  Google Scholar 

  • Li CX, Cowling WA (2003) Identification of a single dominant allele for resistance to blackleg in Brassica napus ‘Surpass 400’. Plant Breed 122:485–488

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new system based on a simple PCR reaction, its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I (2005) Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  PubMed  CAS  Google Scholar 

  • Mengistu A, Hill CB, Williams PH (1995) A toothpick method for mating Leptosphaeria maculans, the casual agent of blackleg of crucifers. Plant Dis 79:755–756

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, Rouxel T (2009) Leptosphaeria maculans avirulence gene AvrLm4–7 confers dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Mol Microb 71:851–863

    Article  CAS  Google Scholar 

  • Pedersen C, Rasmussen SW, Giese H (2002) A genetic map of Blumeria graminis based on functional genes, avirulence genes, and molecular markers. Fungal Genet Biol 35:235–246

    Article  PubMed  CAS  Google Scholar 

  • Pilet ML, Delorume R, Foisset N, Renard M (1998) Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet 97:398–406

    Article  CAS  Google Scholar 

  • Pongam P, Osborn TC, Williams PH (1998) Genetic analysis and identification of amplified fragment length polymorphism markers linked to the alm1 avirulence gene of Leptosphaeria maculans. Phytopathology 88:1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can J Plant Pathol 28:288–297

    Article  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GHJ, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent MH, Howlett BJ (2011) Effectors diversification within compartments of the Leptosphaeria maculans affected by repeat-induced point mutations. Nat Commun 2:202. doi:10.1038/ncomms1189

    Google Scholar 

  • Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    Article  PubMed  CAS  Google Scholar 

  • Sun SJ, Gao W, Lin S, Zhu J, Xie B, Lin Z (2006) Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Appl Microb Biotech 72:537–543

    Article  CAS  Google Scholar 

  • Sun Z, Wang Z, Tu J, Zhang J (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13351 SRAP markers. Theor Appl Genet 114:1305–1317

    Article  PubMed  CAS  Google Scholar 

  • Van de Wouw AP, Marcroft SJ, Barbetti MJ, Li H, Salisbury PA, Gout L, Rouxel T, Howlett BJ, Balesdent MH (2008) Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with ‘sylvestris-derived’ resistance suggests involvement of two resistance genes. Plant Pathol 58:305–313

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0: software for the calculating of genetic linkage maps. Plant Research International B.V, Wageningen

    Google Scholar 

  • Williams PH (1985) Crucifer genetics cooperative. Plant Mol biol Rep 3:129–144

    Article  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet 110:969–979

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Fernando WGD, Remphrey R (2005) Genetic diversity and structure of the Apiosporina morbosa populations on Prunus spp. Phytopathology 95:859–886

    Article  PubMed  CAS  Google Scholar 

  • Zhong SB, Steffenson BJ, Martinz JP, Ciuffetti LM (2002) A molecular genetic map and electrophoretic karyotype of the plant pathogenic fungus Cochliobolus sativus. Mol Plant Microb Interact 15:481–492

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Thierry Rouxel and Dr. Marie- Hélène Balesdent for providing seed of lines 22-1-1 and 23-1-1. We also would like to thank Dr. Julian Thomas, Erica Reidel and Sasanda Nilmalgoda, at the Cereal Research Center of Agriculture and Agri-Food Canada, and Paula Parks, at the University of Manitoba, for their technical assistance in this research. This work was supported by an NSERC Discovery Grant from the Government of Canada, awarded to W.G.D. Fernando, and funding from the Agri-Food Research & Development Initiative (ARDI), Government of Manitoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Dilantha Fernando.

Additional information

Communicated by H. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghanbarnia, K., Lydiate, D.J., Rimmer, S.R. et al. Genetic mapping of the Leptosphaeria maculans avirulence gene corresponding to the LepR1 resistance gene of Brassica napus . Theor Appl Genet 124, 505–513 (2012). https://doi.org/10.1007/s00122-011-1724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1724-3

Keywords

Navigation