Skip to main content
Log in

Quantitative trait loci for early plant vigour of maize grown in chilly environments

  • Original paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Maize (Zea mays L.) is particularly sensitive to chilling in the early growth stages. The objective of this study was to determine quantitative trait loci (QTL) for early plant vigour of maize grown under cool and moderately warm conditions in Central Europe. A population of 720 doubled haploid (DH) lines was derived from a cross between two dent inbred lines contrasting in early vigour and were genotyped with 188 SSR markers. The DH lines per se and their testcrosses with a flint line were evaluated in field experiments across 11 environments in 2001 and 2002. Plants were harvested after six to eight leaves had been fully developed to assess fresh matter yield as a criterion of early vigour. Seven QTL were detected for line performance and ten QTL for testcross performance, explaining 64 and 49% of the genetic variance. Six out of seven QTL detected in the lines per se were also significant in their testcrosses. Significant QTL × environment interaction was observed, but no relationship existed between the size of the QTL effects and the mean temperature in the individual environment. The correlation between fresh matter yield and days to silking was non-significant, indicating that differences in early plant vigour were not simply caused by maturity differences. For three additional chilling-related traits, leaf chlorosis, leaf purpling, and frost damage seven, six, and five QTL were detected, respectively. Three QTL for leaf chlorosis, two for leaf purpling, and two for frost damage co-localized with QTL for fresh matter yield. Results are considered as a reliable basis for further genetic, molecular, and physiological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5:187–195

    Article  Google Scholar 

  • Baker NR, Nie GY (1994) Chilling sensitivity of photosynthesis in maize. In: Bajaj YPS (ed) Biotechnology of maize. Springer, Heidelberg, pp 465–481

    Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162

    Google Scholar 

  • Bertin P, Gallais A (2001) Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines II. QTL detection and coincidences. Maydica 46:53–68

    Google Scholar 

  • Causse M, Rocher JP, Henry AM, Charcosset A, Prioul JL, de Vienne D (1995) Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key-enzyme loci. Mol Breed 1:259–272

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cobbina J, Miller MH (1987) Purpling in maize hybrids as influenced by temperature and soil phosphorus. Agron J 79:576–582

    Article  CAS  Google Scholar 

  • Cochran WG, Cox G (1957) Experimental designs. Wiley, New York

    Google Scholar 

  • Coe EH Jr, Neuffer MG, Hoisington DA (1988) The genetics of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, Wisconsin, pp 81–258

  • Consoli L, Lefevre A, Zivy M, de Vienne D, Damerval C (2002) QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize. Plant Mol Biol 48:575–581

    Article  PubMed  CAS  Google Scholar 

  • Deimling S, Röber FK, Geiger HH (1997) Methodik und Genetik der in-vivo-Haploideninduktion bei Mais. (Methodology and genetics of in vivo haploid induction in maize). Vortr Pflanzenzüchtg 38:203–224

    Google Scholar 

  • Dhillon BS, Sharma RK, Malhotra VV, Khehra AS (1988) Evaluation of maize germplasm for tolerance to low temperature stress under field and laboratory conditions of Zea mays L. J Agron Crop Sci 160:89–93

    Article  Google Scholar 

  • Dolstra O, Haalstra SR, Putten PELvd, Schapendonk AHCM (1994) Genetic variation for resistance to low-temperature photoinhibition of photosynthesis in maize. Euphytica 80:85–93

    Article  Google Scholar 

  • Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol Biochem 40:659–668

    Article  CAS  Google Scholar 

  • Fracheboud Y, Ribaut JM, Vargas M, Messmer R, Stamp P (2002) Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 53:1967–1977

    Article  PubMed  CAS  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  PubMed  CAS  Google Scholar 

  • Frei OM (2000) Changes in yield physiology of corn as a result of breeding in Northern Europe. Maydica 45:173–183

    Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    Article  PubMed  CAS  Google Scholar 

  • Giauffret C, Bonhomme R, Derieux M (1995) Genotypic differences for temperature response of leaf appearance rate and leaf elongation rate in field-grown maize. Agronomie 15:123–137

    Google Scholar 

  • Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Greaves JA (1996) Improving suboptimal temperature tolerance in maize—the search for variation. J Exp Bot 47:307–323

    Article  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Himalton RI (1997) Sensitivity of maize hybrids to chilling and their combining abilities at two developmental stages. Crop Sci 37:850–856

    Article  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    Article  PubMed  CAS  Google Scholar 

  • Hund A, Frascaroli E, Leipner J, Jompuk C, Stamp P, Fracheboud Y (2005) Cold tolerance of the photosynthetic apparatus: pleiotropic relationship between photosynthetic performance and specific leaf area of maize seedlings. Mol Breed 16:321–331

    Article  CAS  Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Knapp SJ, Bridges WL Jr (1987) Confidence interval estimates for heritability for several mating and experimental designs. Theor Appl Genet 73:759–763

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lee EA, Staebler MA, Tollenaar M (2002) Genetic variation in physiological discriminators for cold tolerance—early autotrophic phase of maize development. Crop Sci 42:1919–1929

    Article  Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P (1999) Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ Exp Bot 42:129–139

    Article  CAS  Google Scholar 

  • Marocco A, Lorenzoni C, Fracheboud Y (2005) Chilling stress in maize. Maydica 50:571–580

    Google Scholar 

  • Mc Connell RL, Gardner CO (1979) Inheritance of several cold tolerance traits in corn. Crop Sci 19:847–852

    Article  Google Scholar 

  • Miedema P (1982) The effects of low temperature on Zea mays. In: Brady NC (ed) Adv Agron 35. Academic, New York, pp 93–128

  • Mock JJ, McNeill MJ (1979) Cold tolerance of maize inbred lines adapted to various latitudes in North America. Crop Sci 19:239–242

    Article  Google Scholar 

  • Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–216

    Article  Google Scholar 

  • Nie GY, Baker NR (1991) Modifications to thylakoid composition during development of maize leaves at low growth temperatures. Plant Physiol 95:184–191

    Article  PubMed  CAS  Google Scholar 

  • Revilla P, Malvar RA, Cartea ME, Butron A, Ordas A (2000) Inheritance of cold tolerance at emergence and during early season growth in maize. Crop Sci 40:1579–1585

    Article  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. I. Flowering parameters and the anthesis silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Röber F, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize—performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50:275–283

    Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Utz HF (1993) PLABSTAT Version 2H. Institute of Plant Breeding, Seed science, and population genetics. University of Hohenheim, Stuttgart, Germany

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2, http://www.cabi-publishing.org/jag/papers96/paper196/indexp196.html

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. Walter de Gruyter, Berlin, New York

    Google Scholar 

Download references

Acknowledgments

The study would not have been possible without the efforts of Jochen Jesse, Thomas Schmidt, Helmut Bimek, Herald Pöschel, Dietrich Klein, Dieter Wiebe, Gizo Zieger, Ute Mund, Elke Löhnhardt, Hartmut Meyer, and Hans Hilscher along with the staff at the Hohenheim, Oberer Lindenhof, Eckartsweier, Bernburg, Einbeck, Gondelsheim, and Chartres experimental stations who carefully managed the field experiments. Very special thanks to Silvia Koch and Hans Seifert, who were responsible for coordinating the field experiments and who assisted the authors in analysing the large amounts of data. Many thanks go to H. Friedrich Utz for helpful comments regarding the data analysis, and to Cornelia Glass and the team at PLANTA for running the marker analyses. The project was funded by the Federal Ministry of Education and Research (BMBF), Bonn, and the KWS SAAT AG, Einbeck, Germany, in the frame of the German Plant Genome Research Program GABI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartwig H. Geiger.

Additional information

Communicated by T. Lübberstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presterl, T., Ouzunova, M., Schmidt, W. et al. Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114, 1059–1070 (2007). https://doi.org/10.1007/s00122-006-0499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0499-4

Keywords

Navigation