Skip to main content

Advertisement

Log in

Gamma radiation synthesis optimization of a novel polymer and its possible applications in antimicrobial and antitumor fields

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new monomer, m-keto acetyl naphthalene acrylic acid (KANAc) was synthesized from reactants of maleic anhydride and 1-acetyl naphthalene. This monomer was polymerized by exposure to γ-rays 60Co. The effects of dose, dose rate, monomer concentration, and temperature on polymerization yield have been investigated. KANAc and its poly(KANAc) were characterized by different techniques. The results indicated that the average molecular weights ranged from 1.1 to 7 × 105 g/mol and having a good stability. The poly(KANAc) has showed broad spectrum antimicrobial activity. Minimal inhibitory concentration (MIC) values ranged from 96 to 186 μg/ml. At MIC and 0.5× MIC concentrations, poly(KANAc) exerted variable effects on 24.4 Gy in vitro γ-irradiated and non-irradiated tested strains. Poly(KANAc) altered cell membrane permeability, induced genomic DNA damage and adverse effects on total protein. Furthermore, it proved to induce in vitro cytotoxicity against different human carcinoma cell lines with 50% inhibitory concentrations (IC50) values in the range of 9.9–32.2 μg/ml. The outcome results have been good and promising in both antimicrobial and antitumoral fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahmed AEI, Hay JN, Bushell ME, Wardell JN, Cavalli G (2008) Biocidal polymers (1): Preparation and biological activity of some novel biocidal polymers based on uramil and its azo-dyes. React Funct Polym 68:248–260

    Article  CAS  Google Scholar 

  • Appendini P, Hotchkiss JH (1997) Immobilization of lysozyme on food contact polymers as potential antimicrobial films. Packag Technol Sci 10:271–279

    Article  CAS  Google Scholar 

  • Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126

    Article  CAS  Google Scholar 

  • Barton MFRACR (1995) Tables of equivalent dose in 2 Gy fractions: A simple application of the linear quadratic formula. Int J Radiat Oncol Biol Phys 31:371–378

    Article  PubMed  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Path 45:493–496

    PubMed  CAS  Google Scholar 

  • Billmeyer FW (1984) Textbook of polymer science. Wiley, New York, p 347

    Google Scholar 

  • Borman S (2002) Surfaces designed to kill bacteria. Sci Technol 80:36–40

    Google Scholar 

  • Del Nobile MA, Conte A, Buonocore GG, Incoronato AL, Massaro A, Panza O (2009) Active packaging by extrusion processing of recyclable and biodegradable polymers. J Food Eng 93:1–6

    Article  Google Scholar 

  • El-Hamshary H, Al-Sigeny S, Ali MM (2006) Synthesis and biological study of some amino acid functionalized starch-graft-polyacrylamide. Carbohydr Polym 64:282–286

    Article  CAS  Google Scholar 

  • El-Refaie K, Imam AF, Ahmed AE, Yehia M (2006) Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. React Funct Polym 66:419–429

    Article  Google Scholar 

  • Emerson DW (1993) Chlorine dioxide generated by reaction of sodium chlorite with N-halosulfonamide or N-alkyl-N-halosulfonamide groups on styrene-divinylbenzene copolymers. Ind Eng Chem Res 32:1228–1234

    Article  CAS  Google Scholar 

  • Fisher F, Cook NB (1998) Fundamentals of diagnostic mycology. W.B. Saunders Company, Philadelphia, pp 112–114, 196–230

  • Georgiou CD, Patsoukis N, Papapostolou I (2005) Assay for the quantification of small-sized fragmented genomic DNA. Anal Biochem 339:223–230

    Article  PubMed  CAS  Google Scholar 

  • Goda T, Goto Y, Ishihara K (2010) Cell-penetrating macromolecules: direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells. Biomaterials 31:2380–2387

    Article  PubMed  CAS  Google Scholar 

  • Gray JE, Norton PR, Marolda CL, Valvano MA, Griffiths K (2003) Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 16:2759–2765

    Article  Google Scholar 

  • Hatch GL (1980) Mixed-form polyhalide resins for disinfecting water. US Patent No. 4187183

  • Hatice KC, Doğan AL, Rzaev ZMO, Uner AH, Güner A (2005) Synthesis and antitumor activity of poly(3,4-dihydro-2H-pyran-co-maleic anhydride-co-vinyl acetate). Appl Polym Sci 96:2352–2359

    Article  Google Scholar 

  • Horvath A, Riezman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast 10:1305–1310

    Article  PubMed  CAS  Google Scholar 

  • Hu F-Q, Liu L-N, Du Y-Z, Yuan H (2009) Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials 30(36):6955–6963

    Google Scholar 

  • Hunkeler D, Hamielec AE, Baade W (1989) Mechanism, kinetics and modeling of the inverse microsuspension homopolymerization of acrylamide. Polymer 30:127–142

    Article  CAS  Google Scholar 

  • Jeong JH, Byoun YS, Lee YS (2002) Poly (styrene-alt-maleic anhydride)-4-aminophenole conjugate: synthesis and antimicrobial activity. React Funct Polym 50:257–263

    Article  CAS  Google Scholar 

  • Jin Y, Zhang L, Chen L, Chen Y, Cheung PCK, Chen L (2003) Effect of culture media on the chemical and physical characteristics of polysaccharides isolated from Poria cocos mycelia. Carbohydr Res 338:1507–1515

    Article  PubMed  CAS  Google Scholar 

  • Kadoma Y, Ito S, Atsumi T, Fujisawa S (2009) Mechanisms of cytotoxicity of 2 or 2,6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter. Chemosphere 74:626–632

    Article  PubMed  CAS  Google Scholar 

  • Kaith BS, Aashish C (2008) Synthesis, characterization and evaluation of the transformations in Hibiscus sabdariffa-graft-poly(butyl acrylate). E-J Chem 5:980–986

    Article  CAS  Google Scholar 

  • Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. V. Synthesis and antibacterial activity of polyesters releasing phosphonium biocides. J Polym Chem Part: Polym Chem 31:3003–3011

    Article  CAS  Google Scholar 

  • Kanazawa A, Ikeda I, Endo I (1994) Polymeric phosphonium salts as a novel class of cationic biocides. IX. Effect of side-chain length between main chain and active group on antibacterial activity. J Polym Sci Part A: Polym Chem 32:1992–2001

    Article  Google Scholar 

  • Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Analysis of DNA fragmentation using agarose gel electrophoresis. Cold Spring Harb Protoc. doi:10.1101/pdb.prot4429

    Google Scholar 

  • Krieg NR, Holt JG (1994) Bergey’s manual of determinative bacteriology. The Williams and Wilikins Company, Library of Congress, Baltimore, MA

  • Kumar RS, Arunachalam S (2009) DNA binding and antimicrobial studies of polymer–copper (ΙΙ) complexes containing 1,10-phenanthroline and Ι-phenylalanine ligands. Eur J Med Chem 44:1878–1883

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lebendiker M (2002) Bacterial Protein Extraction-mini scale-Sonication. The Protein Purification Facility. The Wolfson Centre for Applied Structural Biology. The Hebrew University of Jerusalem

  • Mahmoud YA-G, Aly MM (2004) Anti-Candida and mode of action of two newly synthesized polymers: a modified poly (methylmethacrylate-co-vinylbenoylchloride) and a modified linear poly (chlorethylvinylether-co-vinylbenzoylchloride) with special reference to Candida albicans and Candida tropicalis. Mycopathologia 157:145–153

    Article  PubMed  CAS  Google Scholar 

  • Milan VP, Mitul BD, Jatin NP, Rajni MP (2005) Synthesis and characterization of novel acrylic copolymers: Determination of monomer reactivity ratios and biological activity. React Funct Polym 65:195–204

    Article  Google Scholar 

  • Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46:3695–3705

    Article  PubMed  CAS  Google Scholar 

  • NCCLS (1993) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7–A3. National Committee for Clinical Laboratory Standard, Villanova, PA

    Google Scholar 

  • NCCLS (2002a) Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi; proposed standard M38-A. National Committee for Clinical Laboratory Standard, Wayne, PA

    Google Scholar 

  • NCCLS (2002b) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard M27-A2. National Committee on Clinical Laboratory Standards, Wayne, PA

  • NCCLS (2003) Method for antifungal disk diffusion susceptibility testing of yeast; proposed guideline M44-P. National Committee for Clinical Laboratory Standard, Wayne, PA

    Google Scholar 

  • Oldberg S, Doyle RJ, Rosenberg M (1990) Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers. J Bacteriol 172:5650–5654

    Google Scholar 

  • Ottenbrite RM (1985) Antitumor activity of polycarboxylic acid. J Macromol Sci Chem A22(5–7):819–832

    CAS  Google Scholar 

  • Ozdemir M, Yurteri CU, Sadikoglu H (1999) Physical polymer surface modification methods and applications in food packaging polymers. CRC Crit Rev Food Sci Nutr 39:457–477

    Article  CAS  Google Scholar 

  • Putnam D, Kopecek J (1995) Polymer conjugates with anticancer activity. Adv Polym Sci 55:122–123

    Google Scholar 

  • Qing-xin Z, Jian-bin S, Min-qiao R, Shu-yun W, Zhao-bin Q, Hong-fang Z, Zhi-shen M (2004) Structural analysis of perkekk (T/I) using waxed, imaging plates and saxs. Chin J Polym Sci 22:379–387

    Google Scholar 

  • Radheshkumar C, Münstedt H (2006) Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. React Funct Polym 66:780–788

    Article  CAS  Google Scholar 

  • Rajendran S, Sivakumar P, Ravi SB (2006) Investigation on poly (vinylidene fluoride) based gel polymer electrolytes. Bull Mater Sci 29:673–678

    CAS  Google Scholar 

  • Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym 79:998–1005

    Article  CAS  Google Scholar 

  • Sauvet G, Dupond S, Kazmierski K, Chojnowski J (2000) Biocidal polymers active by contact. V. Synthesis of polysiloxanes with biocidal activity. J Appl Polym Sci 75:1005–1012

    Article  CAS  Google Scholar 

  • Seyfriedsberger G, Rametsteiner K, Kern W (2006) Polyethylene compounds with antimicrobial surface properties. Eur Polym J 42:3383–3389

    Article  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J Natl Cancer Inst 82:1107–1112

    Article  CAS  Google Scholar 

  • Smith WV, Ewart RH (1948) Kinetics of emulsion polymerization. J Chem Phys 16:592–600

    Article  CAS  Google Scholar 

  • Vogl O, Albertsson AC, Jariovic Z (1985) New developments in specialty polymers: polymeric stabilizers. Polymer 26:1288–1296

    Article  CAS  Google Scholar 

  • Xuewu G, Qiang Y, Xiangling X, Zhicheng Z (1998) Radiation copolymerization of acrylamide and cationic monomer in an inverse emulsion. Polymer 39:1917–1920

    Article  Google Scholar 

  • Yoshihisa K, Yoko Y, Shin-ichi T, Haruhiko K, Yasuo T, Takashi H, Tadanori M (1997) Bioconjugation of tumor necrosis factor-α with the copolymer of divinyl ether and maleic anhydride increasing its antitumor potency. Biochem Biophys Res Commun 239:160–165

    Article  Google Scholar 

  • Youngs JF (1967) Humidity control in the laboratory using salt solutions—a review. J Appl Chem 17:241–245

    Article  Google Scholar 

  • Zhenshu Z, Yuan L, Xiaolin L, Rutian L, Zhijun J, Baorui L, Wanhua G, Wei W, Xiqun J (2010) Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: preparation and antitumor activity in vivo. J Control Release 142:438–446

    Article  Google Scholar 

Download references

Acknowledgments

We thank all those of the Cancer Biology Department, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt for their sincere cooperation in cytotoxicity tests using tumor cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona M. K. Shehata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostafa, T.B., Awadallah-F, A. & Shehata, M.M.K. Gamma radiation synthesis optimization of a novel polymer and its possible applications in antimicrobial and antitumor fields. Med Chem Res 22, 479–497 (2013). https://doi.org/10.1007/s00044-012-9993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-9993-1

Keywords

Navigation