Skip to main content
Log in

H-RYK, an Unusual Receptor Kinase: Isolation and Analysis of Expression in Ovarian Cancer

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Protein tyrosine kinases play an imporH-RYK, an Unusual Receptor Kinase: Isolation and Analysis of Expression in Ovarian Cancertant role in cellular metabolism as key components of signal transduction pathways. They are involved in cellular growth, differentiation, and development. Receptor tyrosine kinases (EGF receptor and c-erbB2) have been shown to be important in the pathogenesis of cancer. In ovarian cancer, overexpression of c-erbB2, a type I receptor, has been correlated with an adverse effect on survival of patients.

Material and Methods

An unusual receptor tyrosine kinase, H-RYK, has been isolated from a complimentary DNA library of SKOV-3, an epithelial ovarian cancer cell line, using a polymerase chain reaction-mediated approach.

Results

The primary structure of the predicted amino acid sequence of the protein shows a novel NH2-terminal region. The catalytic region shows homology to other tyrosine kinases, the closest homology being with v-sea(39%). A significant alteration in the catalytic domain is that the highly conserved “DFG” triplet in subdomain VII is altered to “DNA.” The gene was mapped to chromosome 3q22. A single transcript of 3.0 kb is expressed in heart, brain, lung, placenta, liver, muscle, kidney, and pancreas by Northern analysis with maximal expression in skeletal muscle. In situ hybridization analysis on human tissues demonstrated localization of message in the epithelial and stromal compartment of tissues such as brain, lung, colon, kidney, and breast. There was minimal to absent expression of H-RYK on surface epithelium of ovaries. In benign (3) and borderline tumors of the ovary (5), there was expression in the stromal compartment. However, in malignant tumors (24) there was increased expression predominantly confined to the epithelium. Polyclonal antisera raised against synthetic peptides recognize a 100-kD protein in ovarian cancer cells and other cell lines. In contrast to other receptor tyrosine kinases, the receptor did not phosphorylate in an in vitro kinase assay.

Conclusions

The expression of this unusual receptor tyrosine kinase in epithelial ovarian cancer suggests that it may be involved in tumor progression, which needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
FIG. 6
Fig. 7

Similar content being viewed by others

References

  1. Hunter T. (1987) A thousand and one protein kinases. Cell 50: 823–829.

    Article  CAS  PubMed  Google Scholar 

  2. Hanks SK, Quinn AM, Hunter T. (1988) The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

    Article  CAS  PubMed  Google Scholar 

  3. Schlessinger J, Ullrich A. (1992) Growth factor signalling by receptor tyrosine kinases. Neuron 9: 383–391.

    Article  CAS  PubMed  Google Scholar 

  4. Pawson T. (1995) Protein modules and signalling networks. Nature 373: 573–579.

    Article  CAS  PubMed  Google Scholar 

  5. Pawson T. (1995) Getting down to specifics. Nature 373: 477–478.

    Article  CAS  PubMed  Google Scholar 

  6. Darnell Jr JE, Kerr IM, Stark GR. (1994) Jak-STAT pathways and transcriptional activation in response to IFNS and other extracellular signalling proteins. Science 264: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  7. Heldin C-H. (1995) Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223.

    Article  CAS  PubMed  Google Scholar 

  8. Cantley LC, Auger KR, Carpenter C, et al. (1991) Oncogenes and signal transduction. Cell 64: 281–302.

    Article  CAS  PubMed  Google Scholar 

  9. Slamon DJ, Godolphin W, Jones LA, et al. (1989) Studies of the HER-2/neu proto-on-cogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  10. Baserga R. (1995) The insulin-like growth factor I receptor: A key to tumor growth? Cancer Res. 55: 249–252.

    PubMed  CAS  Google Scholar 

  11. Eng C, Smith DP, Mulligan LM, et al. (1994) Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum. Mol. Genet. 3: 237–241.

    Article  CAS  PubMed  Google Scholar 

  12. Mulligan LM, Kwok JBJ, Healey CS, et al. (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363: 458–460.

    Article  CAS  PubMed  Google Scholar 

  13. Songyang Z, Carraway KL, Eck MJ, et al. (1995) Catalytic specificity of protein tyrosine kinases is critical for selective signalling. Nature 373: 536–539.

    Article  CAS  PubMed  Google Scholar 

  14. Shaing R, Thompson LM, Zhu Y-Z. (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78: 335–342.

    Article  Google Scholar 

  15. Wilks AF. (1989) Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86: 1603–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laval S, Butler R, Shelling AN, Hanby AM, Poulsom R, Ganesan TS. (1994) Isolation and characterisation of an epithelial specific receptor kinase from an ovarian cancer cell line. Cell Growth Differ. 5: 1173–1183.

    PubMed  CAS  Google Scholar 

  17. Stacker SA, Hovens CM, Vitali A, et al. (1993) Molecular cloning and chromosomal localisation of the human homologue of a receptor related to tyrosine kinases. Oncogene 8: 1347–1356.

    PubMed  CAS  Google Scholar 

  18. Tamagnone L, Partanen J, Armstrong E, et al. (1993) The human RYK cDNA sequence predicts a protein containing two putative transmembrane segments and a tyrosine kinase catalytic domain. Oncogene 8: 2009–2014.

    PubMed  CAS  Google Scholar 

  19. Sanger F, Nicklen S, Coulson R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Senior PV, Critchley DR, Beck F, Walker RA, Varley JM. (1988) The localisation of laminin mRNA and protein in the postimplantation embryo and placenta of mouse: An in situ and immunocytochemical study. Development 104: 431–446.

    PubMed  CAS  Google Scholar 

  21. Walker LC, Ganesan TS, Dhut S, et al. (1987) Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. Nature 329: 851–853.

    Article  CAS  PubMed  Google Scholar 

  22. Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  23. Rooney DE, Czepulkowski BH (eds). (1986) Human Genetics: A Practical Approach. IRL Press, London.

    Google Scholar 

  24. Shelling AN, Butler R, Jones T, Laval S, Boyle JM, Ganesan TS. (1995) Localisation of an epithelial-specific receptor kinase (EDDR1) to chromosome 6q16. Genomics 25: 584–587.

    Article  CAS  PubMed  Google Scholar 

  25. Ullrich A, Bell JR, Chen EY, et al. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756–761.

    Article  CAS  PubMed  Google Scholar 

  26. Smith D, Vogt PK, Hayman MJ. (1989) The v-sea oncogene of avian erythroblastosis virus S13—Another member of the protein tyrosine kinase gene family. Proc. Natl. Acad. Sci. U.S.A. 86: 5291–5295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Songyang Z, Shoelson SE, Chaudhuri M, et al. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.

    Article  CAS  PubMed  Google Scholar 

  28. Songyang Z, Shoelson SE, McGlade J, et al. (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14: 2777–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hubbard SR, Wei L, Ellis L, Hendrickson WA. (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372: 746–753.

    Article  CAS  PubMed  Google Scholar 

  30. Moran MF, Kock CA, Sadowski I, Pawson T. (1988) Mutational analysis of a phosphotransfer motif essential for v-fps tyrosine kinase activity. Oncogene 3: 665–672.

    PubMed  CAS  Google Scholar 

  31. Chou Y-H, Hayman MJ. (1991) Characterisation of a member of the immunoglobulin gene superfamily that possibly represents an additional class of growth factor receptor. Proc. Natl. Acad. Sci. U.S.A. 88: 4897–4901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. White MF. (1994) The IRS-1 signaling system. Curr. Opin. Genet. Dev. 4: 47–54.

    Article  CAS  PubMed  Google Scholar 

  33. Hovens CM, Stacker SA, Andres A-C, Harpur AG, Ziemiecki A, Wilks AF. (1992) RYK, a receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc. Natl. Acad. Sci. U.S.A. 89: 11818–11822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kelman Z, Simon-Chazottes D, Guenet J-L, Yarden Y. (1993) The murine vik gene (chromosome 9) encodes a putative receptor with unique protein kinase motifs. Oncogene 8: 37–44.

    PubMed  CAS  Google Scholar 

  35. Bansal A, Gierasch LM. (1991) The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell 67: 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  36. Chen W-J, Goldstein J, Brown MS. (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265: 3116–3123.

    PubMed  CAS  Google Scholar 

  37. Kavanaugh WM, Turck CW, Williams LT. (1995) PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268: 1177–1179.

    Article  CAS  PubMed  Google Scholar 

  38. Prigent SA, Gullick WJ. (1994) Identification of c-erbB-3 binding sites for phosphatidylinositol 3′kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J. 13: 2831–2841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wallasch C, Weib FU, Niederfellner F, Jallal B, Issing W, Ullrich A. (1995) Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 14: 4267–4275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Callahan CA, Muralidhar MG, Lundgren SE, Scully AL, Thomas JB. (1995) Control of neuronal pathway selection by a Drosophila receptor protein-tyrosine kinase family member. Nature 376: 171–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. J. Trowsdale and Dr. S. Chatterjee for the SKOV-3 and normal ovary cDNA libraries. Drs. A. P. Wilson and S. Langdon are gratefully acknowledged for the cell lines. ICRF Cell Production Services, In Situ Hybridization Service and Peptides Synthesis Laboratories are acknowledged. This work was supported by the Imperial Cancer Research Fund. Mr. R. Katso is a Rosina Valerie Howell Fellow.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.C., Katso, R., Butler, R. et al. H-RYK, an Unusual Receptor Kinase: Isolation and Analysis of Expression in Ovarian Cancer. Mol Med 2, 189–203 (1996). https://doi.org/10.1007/BF03401616

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401616

Navigation