Skip to main content
Log in

Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The potential of various organisms to metabolize organic compounds has been observed to be a potentially effective means in disposing of hazardous and toxic wastes. Phenols and their compounds have long been recognized as one of the most recalcitrant and persistent organic chemicals in the environment. The bioremediation potential of an indigenous Pseudomonas fluorescence was studied in batch culture using synthetic phenol in water in the concentration range of (100–500) mg/L as a model limiting substrate. The effect of initial phenol concentration on the degradation process was investigated. Phenol was completely degraded at different cultivation times for the different initial phenol concentrations. Increasing the initial phenol concentration from 100 mg/L to 500 mg/L increased the lag phase from 0 to 66 h and correspondingly prolonged the degradation process from 84 h to 354 h. There was decrease in biodegradation rate as initial phenol concentration increased. Fitting data into Monod kinetic model showed the inhibition effect of phenol The kinetic parameters have been estimated up to initial phenol concentration of 500 mg/ L. The rsmax decreased and Ks increased with higher concentration of phenol. The rsmaxhas been found to be a strong function of initial phenol concentration. The culture followed substrate inhibition kinetics and the specific phenol consumption rates were fitted to Haldane, Yano and Koga, Aiba et al., Teissier and Webb models. Between the five inhibition models, the Haldane model was found to give the best fit. Therefore, the biokinetic constants estimated using these models showed good potential of the Pseudomonas fluorescence and the possibility of using it in bioremediation of phenol waste effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El Hameidshalaby, M. El-s. (2003). Biological degradation of substrate mixtures composed of phenol, benzoate and acetate by Burkholderia cepacia G4. Ph.D Thesis. Gesellschaft fur Biotechnologische Forschung mbH, MascheroderWegl, D — 38124 Braunschweig, Germany.

  • Andrews, J. F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substance, Biotechnol. Bioeng., 10, 707–723.

    Article  CAS  Google Scholar 

  • Annadurai, G.; Balan, S. M.; Murugesan, T., (2000). Design of experiments in the biodegradation of phenol using immobilized Pseudomonas pictorium (NICM-2077) on activated carbon., Bioproc. Eng., 22(6), 101–107.

    Article  CAS  Google Scholar 

  • ATSDR, (2003). Agency for toxic substances and disease registry. Medical management guidelines for phenol. Avaiable from: http://www.atsdr.cdc.gov/MHM1/mmg115.html.

  • Bandyopadhyay, K.; Das, D.; Maiti, B. R., (1998). Kinetics of phenol degradation using Pseudomonas putida MTCC 1194., Bioproc. Eng., 18(5), 373–377.

    CAS  Google Scholar 

  • Bettman, H.; Rehm, H. J., (1984). Degradation of phenol by polymer entrapped microorganisms. Appl. Microbiol. Biotechnol., 20(5), 285–290.

    Article  Google Scholar 

  • Calabrese, E. J.; Kenyon, E. M. (1991). Air toxics and Risk Assessment. Lewis publishers, Chelsea, MI.

    Google Scholar 

  • Chang, Y. H.; Li, C. T.; Chang, M. C.; Shieh, W. K. (1998). Batch phenol degradation by Candida tropicalis and its fusant, Biotechnol. Bioeng., 60(3), 391–395.

    Article  CAS  Google Scholar 

  • Collins, L. D.; Daugulis, A. J. (1997). Biodegradation of phenol at high initial concentration in two-phase partitioning batch and fed-batch bioreactors, Biotechnol. Bioeng., 55(1), 155–162.

    Article  CAS  Google Scholar 

  • Edwards, V. H. (1970). The influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng., 12(5), 679–712.

    Article  CAS  Google Scholar 

  • EPA, (1979). Phenol ambient water quality criteria. Office of planning and standards.Environmental Protection Agency, Washington, D. C. BB296786.

    Google Scholar 

  • Fava, F.; Armenante, P. M.; Kafkewitz, D.; Marchetti, L., (1995). Influence of organic and inorganic growth supplements on the aerobic biodegradation of chlorobenzoic acid, Appl. Microbiol. Biotechnol., 43(1), 171–177.

    Article  CAS  Google Scholar 

  • Feist, C.; Hegeman, G. D., (1969). Phenol and benzoate metabolism by Pseudomonas putida: Regulation of tangential pathways, J. Bacteriol., 100(2), 869–877.

    CAS  Google Scholar 

  • Folsom, B. R.; Chapman, P. J.; Pritchard, P. H. (1990). Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates., Appl. Environ. Microbiol., 56(5), 1279–1285.

    CAS  Google Scholar 

  • Hao, O.; Kim, M.; Seagren, E.; Kim, H. (2002). Kinetics of phenol and chlorophenol utilization by Acinetobacter isolates., Chemosphere, 46(6), 797–807.

    Article  CAS  Google Scholar 

  • Hill, G. A.; Robinson, C. W. (1975). Substrate inhibition kinetics: phenol degradation by Pseudomonas putida, Biotechnol. Bioeng. 17(11), 599–615.

    Article  Google Scholar 

  • Hinteregger, C.; Leitner, R.; Loidl, M.; Fershl, A.; Streichsbier, F. (1992). Degradation of phenol and phenolic compounds by Pseudomonas putida EK 11., Appl. Environ. Microbiol., 37, 252–259.

    CAS  Google Scholar 

  • Hughes, E. J.; Bayly, R. C.; Skurray, R. A. (1984). Evidence for isofunctional enzymes in the degradation of phenol, m — and p — toluate, and p-cresol via catechol metacleavage pathways in Alcaligenes eutrophus, J. Bacteriol., 158(1), 79–83.

    CAS  Google Scholar 

  • Kobayashi, H.; Rittman, B. E. (1982). Microbial removal of hazardous organic compounds. Environ. Sci. Tech., 16(3), 170–183.

    Article  Google Scholar 

  • Kotturi, G.; Robinson, C. W.; Inniss, W. E. (1991). Phenol degradation by a psychrotrophic strain of Pseudomonas putida., Appl. Microbial. Biotechnol., 34(4), 539–543.

    Article  CAS  Google Scholar 

  • Layokun, S. K.; Umoh, E. F.; Solomon, B. O. (1987). A kinetic model for the degradation of dodecane by P. fluorescens isolated from the oil polluted area, Warri in Nigeria, J. Nsche., 16, 48–52.

    Google Scholar 

  • Leonard, D.; Lindley, N. D., (1998). Carbon and energy flux constraints in continuous cultures of Alcaligenes eutrophus grown on phenol, Microbiology, 144(1), 241–248.

    Article  CAS  Google Scholar 

  • Mahadevaswamy, M.; Mall, I. D.; Prasad, B.; Mishra, I. M. (1997). Removal of phenol by adsorption on coal fly ash and activated carbon, Pollut. Res., 16(3), 170–175.

    Google Scholar 

  • Monod, J. (1949). The growth of bacterial cultures., Ann. Rev. Microbiol., 3, 371–394.

    Article  CAS  Google Scholar 

  • Nikakhtari, H.; Hill, G. A. (2006). Continuous bioremediation of phenol-polluted air in an external loop airlift bioreactor with a packed bed., J. Chem. Technol. Biotechnol., 81(6),1029–1038.

    Article  CAS  Google Scholar 

  • Oboirien, B. O.; Amigun, B.; Ojumu, T. V.; Ogunkunle, O. A.; Adetunji, O. A.; Betiku, E.; Solomon, B. O., (2005). Substrate inhibition kinetics of phenol degradation by Pseudomonas aeruginosa and Pseudomonas fluorescence., Biotechnol., 4(1), 56–61.

    Article  CAS  Google Scholar 

  • Paller, G.; Hommel, R. K.; Kleber, H. P., (1995). Phenol degradation by Acinetobacter calcoaceticus NCIB 8250., J. Basic Microbiol., 35(5), 325–335.

    Article  CAS  Google Scholar 

  • Pirt, S. J., (1975). Principles of microbe and cell cultivation. Blackwell scientific publication, Oxford, United Kingdom.

    Google Scholar 

  • Prpich, G. P.; Daugulis, A. J., (2005). Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two-phase partitioning bioreactor., Biodegradat., 16(4), 329–339.

    Article  CAS  Google Scholar 

  • Reardon, K. F.; Mosteller, D. C.; Rogers, J. D. (2000). Biodegradation kinetics of benzene, toluene and phenol and mixed substrates for Pseudomonas putida F1., Biotechnol. Bioeng., 69(4), 385–400.

    Article  CAS  Google Scholar 

  • Ruiz-ordaz, N.; Ruiz-Lagunez, J. C.; Castanou-Gonzalez, J. H.; Hernandez-Manzano, E.; Cristiani-Urbina, E.; Galindez-Mayer, J., (1998). Growth kinetic model that describes the inhibitory and lytic effects of phenol on Candida tropicalis yeast, Biotechnol. Prog., 14(6), 966–969.

    Article  CAS  Google Scholar 

  • Ruiz-ordaz, N.; Ruiz-Lagunez, J. C.; Castanou-Gonzalez, J. H.; Hernandez-Manzano, E.; Cristiani-Urbina, E.; Galindez-Mayer, J. (2001). Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multistage bubble column, Revista Latinoamericana de Microbiogia, 43, 19–25.

    CAS  Google Scholar 

  • Saez, P. B.; Rittman, B. E. (1991). Biodegradation kinetics of 4 — chlorophenol, an inhibitory co-metabolite., Res. J. Water pollut. Control Fed., 63(6), 838–847.

    CAS  Google Scholar 

  • Saravanan, P.; Pakshirajan, K.; Saha, P. (2008). Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor, Bioresource. Tech., 99(1), 205–209.

    Article  CAS  Google Scholar 

  • Schroeder, M.; Muller, C.; Posten, C.; Deckwer, W-D.; Hecht, V. (1997). Inhibition kinetics of phenol degradation from unstable steady state data., Biotechnol. Bioeng., 54(6), 567–576.

    Article  CAS  Google Scholar 

  • Sokol, W. (1988). Dynamics of continuous stirred-tank biochemical reactor utilizing inhibitory substrate., Biotechnol. Bioeng., 31(3), 198–202.

    Article  CAS  Google Scholar 

  • Solomon, B. O.; Posten, C.; Harder, M. P. F.; Hecht, V.; Deckwer, W-D. (1994). Energetics of Pseudomonas cepacia growth in a chemostat with phenol limitation, J. Chem. Tech. Biotechnol., 60(3), 275–282.

    Article  CAS  Google Scholar 

  • Yang, R. D.; Humphrey, A. E. (1975). Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures, Biotechnol. Bioeng., 17(8), 1211–1235.

    Article  CAS  Google Scholar 

  • Yano, T.; Koga, S. (1969). Dynamic behaviour of the chemostat subject to substrate inhibition, Biotechnol. Bioeng., 11(2), 139–153.

    Article  CAS  Google Scholar 

  • Zilli, M.; Converti, A.; Lodi, A.; DelBorghi, M.; Ferraiolo, G. (1993). Phenol removal from waste gases with a biological fitter by Pseudomonas putida, Biotechnol. Bioeng., 41, 693–699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Agarry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarry, S.E., Solomon, B.O. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence . Int. J. Environ. Sci. Technol. 5, 223–232 (2008). https://doi.org/10.1007/BF03326016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326016

Keywords

Navigation