Skip to main content
Log in

The deleterious effects of aging and kainic acid may be selective for similar striatal neuronal populations

  • Original Articles
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The present experiments were performed to determine whether the age-related loss of striatal D2 receptors could be localized to a kainic acid-sensitive neuronal population. This neurotoxin selectively destroys intrinsic neurons. Thus, if kainic acid reduced striatal D2 receptor concentrations such that age differences in this parameter were no longer observed, it would be a good indication that the D2 receptors lost through aging are also sensitive to kainic acid. Mature (6 months) and senescent (24 months) rats were stereotaxically, unilaterally injected with 3 μg/0.5 μl kainic acid into the right striatum. Seven days later striatal D2 receptors were assessed with [3H]-spiperone in one group of mature and senescent rats. A second group of mature and senescent unilaterally lesioned rats was anesthetized and perfused. Brains were dissected and processed for striatal cell counts using cresyl violet staining, tyrosine hydroxylase and met-enkephalin using immunocytochemistry, and acetylcholinesterase using histochemistry. Age-related differences in D2-receptor concentrations were observed in intact, but not lesioned, striata. Kainic acid was less effective in reducing D2-receptor concentrations in senescent animals, suggesting that some proportion of the receptors was already lost prior to lesioning. Kainic acid also reduced total neuronal numbers, as well as Met-Enk and AChE positive staining, to approximately the same extent in mature and senescent rats. No age differences were seen in any of the other parameters following kainic acid administration. (Aging 3: 361-371, 1991)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joseph J.A., Roth G.S., Strong R.: The striatum. A microcosm for the examination of age-related alterations in the CNS: A selected review. In: Rothstein M. (Ed.), Review of Biological Research in Aging, Vol. 4, Wiley Liss, New York, 1990, pp. 181–201.

    Google Scholar 

  2. Roth G.S., Henry J.M., Joseph J.A.: The striatal dopaminergic system as a model for modulation of altered neurotransmitter action during aging: effects of dietary and neuroendocrine manipulations. In: Swaab D.F., Fliers E., Mirimiran M, Van Gool W.A., Van Hareen F. (Eds.), Progress in Brain Research, Vol. 70. Elsevier Science Publishers, Amsterdam, 1986, pp. 473–484.

    Google Scholar 

  3. Henry J.M., Joseph J.A., Kochman K., Roth G.S.: Effect of aging on striatal dopamine receptor subtype recovery following N-ethoxycarbonyl-2-ethoxy-l,2 dihydroquinoline blockade and relation to motor function in Wistar rats. Brain Res. 418: 334–342, 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Han Z., Kuyatt B.J., Kochman K.A., De Souza E.B., Roth G.S.: Effect of aging on concentrations of D2-receptor containing neurons in the rat striatum. Brain Res. 498: 299–307, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Dawson V.L., Dawson T.M., Filloux F.M., Wamsley J.K.: Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate putamen. Life Sci. 42: 1933–1939, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Scatton B.: Further evidence for the involvement of D2 but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission. Life Sci. 31:2882–2890,1982.

    Google Scholar 

  7. Stoof J.C., De Boer T., Smina P., Mulder A.H.: Stimulation of D2-dopamine receptors in rat neostriatum inhibits the release of acetylcholine and dopamine but does not affect the release of gamma-aminobutyric acid, glutamate or serotonin. Eur. J. Pharmacol. 84: 211–214, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Le Moine C., Normand E., Guitteny A.F., Foque B., Teoule R., Bloch B.: Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc. Natl. Acad. Sci. USA 87: 230–234, 1990.

    Article  PubMed  Google Scholar 

  9. Le Moine C., Tison F., Bloch B.: D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum. Neurosci. Lett. 117: 248–252, 1990.

    Article  PubMed  Google Scholar 

  10. Hattori T., McGeer P.L.: Fine structural changes in the rat striatum after local injections of kainic acid. Brain Res. 129: 174–180, 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Schwarcz R., Coyle J.T.: Striatal lesions with kainic acid: Neurochemical characteristics. Brain Res. 127: 235–249, 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Cross A.J., Waddington J.L.: Kainic acid lesions dissociate [3H] spiperone and [3H] cis-flupenthixol binding sites in rat striatum. Eur. J. Pharmacol 71: 327–332, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Leff S., Actams L., Hyttel J., Creese I.: Kainate lesions dissociate striatal dopamine receptor radioligand binding sites. Eur. J. Pharmacol 70: 71–75, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Minneman K.P., Quik M., Emson P.C.: Receptor-linked cyclic AMP systems in rat neostriatum: Differential localization revealed by kainic acid injection. Brain Res. 151: 507–521, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Schwarcz R., Creese I., Coyle J.T., Snyder S.H.: Dopamine receptor localized on rat cerebral cortical afferents to rat corpus striatum. Nature 271: 766–768, 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarcz R., Fuxe K., Hokfelt T., Terenius L., Goldstein M.: Effects of chronic striatal kainate lesions on some dopaminergic parameters and enkephalin immunoreactive neurons in the basal ganglia. J. Neurochem. 34: 772–778, 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Theodorou A., Reavill C., Jenner P., Marsden C.D.: Kainic acid lesions of striatum and decortication reduce specific [3H]sulpiride binding in rats, so D-2 receptors exist post-synaptically on corticostriate afferents and striatal neurons. J. Pharm. Pharmacol. 33: 439–444, 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Van der Weide J., De Vries J.B., Tepper P.G., Horn A.S.: The effects of kainic acid 6-hydroxydopamine lesions, and metal ions on in vitro binding of the D-2 dopamine agonist [3H] N-0437, to striatal membranes. Eur. J. Pharmacol. 143: 101–107, 1987.

    Article  PubMed  Google Scholar 

  19. Walaas I.: The effects of kainic acid injections on geniality cyclase activity in the rat caudatoputamen, nucleus accumbens and septum. J. Neurochem. 36: 233–241, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Chesselet M.F., Graybiel A.M.: Met-enkaphalin and dynorphin-like immunoreactivity of the basal ganglia of the cat. Life Sci. 33: 37–40, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Graybiel A.M., Ragsdale C.W.: Biochemical anatomy of the striatum. In: Emson P.C. (Ed.), Chemical Neuroanatomy. Raven Press, New York, 1983, pp. 427–504.

    Google Scholar 

  22. Van der Kooy D., Weinreich P., Nagy J.I.: Dopamine and opiate receptors: localization in the striatum and evidence for their axoplasmic transport in the nigro-striatal and striatonigral pathways. Neurosci. 19: 139–146, 1986.

    Article  Google Scholar 

  23. Pelligrino L.J., Cushman A.J.: A Stereotaxic Atlas of the Rat Brain. Meredith, New York, 1967.

    Google Scholar 

  24. Scatchard G.: The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51: 1623–1631, 1949.

    Article  Google Scholar 

  25. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent. J. Bol. Chem. 193: 265–275, 1951.

    CAS  Google Scholar 

  26. Gupta M., Feiten D.L., Gash D.M.: MPTP alters central catecholamine neurons in addition to the nigrostriatal system. Brain Res. Bull. 13: 737–742, 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Cepeda C., Walsh J.P., Hull CD., Buchwald NA, Levine M.S.: Intracellular neurophysiological analysis reveals alterations in excitation in striatal neurons in aged rats. Brain Res. 494: 215–226, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Najlerahim A., Francis P.T., Bowen D.M.: Age-related alteration in excitatory amino acid neurotransmission in rat brain. Neurobiol. Aging 11: 155–158, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Biziere K., Coyle J.T.: Influence of corticostriatal afferents on striatal kainic acid neurotoxicity. Neurosci. Lett. 8: 303–310, 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Coyle J.T., Schwarcz R.: Lesions of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263: 244–246, 1976.

    Article  PubMed  CAS  Google Scholar 

  31. London E.D., Coyle J.T.: Specific binding of [3H]-kainic acid to receptor sites in rat brain. Mol. Pharmacol. 15: 492–505, 1979.

    PubMed  CAS  Google Scholar 

  32. Matyja E.: Ultrastructural evaluation of the damage of postsynaptic elements after kainic acid injection into the rat neostriatum. J. Neurosci. Res. 15: 405–413, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. McGeer E.G., McGeer P.L.: Duplication of biochemical changes of Huntington’s chorea by intrastriatal injection of glutamic and kainic acid. Nature 263: 517–519, 1976.

    Article  PubMed  CAS  Google Scholar 

  34. McGeer E.G., McGeer P.L.: Some factors influencing the neurotoxicity of intrastriatal injections of kainic acid. Neurochem. Res. 3: 501–517, 1978.

    Article  PubMed  CAS  Google Scholar 

  35. Nadler J.V.: Kainic acid: Neurophysiological and neurotoxic actions. Life Sci. 24: 289–300, 1979.

    Article  PubMed  CAS  Google Scholar 

  36. Altavista M.C., Bentivoglio A.R., Crociani P., Rossi P., Albanese A.: Age-dependent loss of cholinergic neurons in basal ganglia of rats. Brain Res. 455: 177–181, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Brizzee K.R., Samorajski T., Smith R.C., Brizzee D.L.: The effect of age and chronic neuroleptic drug treatment on cell populations in the neostriatum of Fischer 344 rats. In: Enna S.J., Samorajski T., Beer B. (Eds.), Brain Neurotransmitters and Receptors in Aging and Age-related Disorders. Raven Press, New York, 1980, pp. 286–291.

    Google Scholar 

  38. Bugiani O., Salvarani S., Perdelli F., Mancardi G.L., Leonardi A.: Nerve cell loss with aging in the putamen. Eur. Neurol. 17: 286–291, 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Fischer W., Gage F.H., Bjorklund A.: Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur. J. Neurosci. 1: 34–45, 1989.

    Article  PubMed  Google Scholar 

  40. Divac I., Markowitsch H.J., Pritzel M.: Behavioral and anatomic consequences of small intra-striatal injections of kainic acid in the rat. Brain Res. 151: 523–532, 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Coyle J.T., Molliver M.E., Kuhar M.J.: Morphologic analysis of kainic acid lesion of rat striatum. J. Comp. Neurol 180: 301–324, 1979.

    Article  Google Scholar 

  42. Gottesfeld Z., Jocobowitz D.M.: Kainic acid-induced neurotoxicity in the striatum: A histofluorescent study. Brain Res. 169: 513–518, 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Biziere K., Coyle J.T.: Effects of cortical ablation on the neurotoxicity and receptor binding of kainic acid in striatum. J. Neurosci. Res. 4: 383–398, 1979.

    Article  PubMed  CAS  Google Scholar 

  44. McBean G.J., Roberts P.J.: Chronic infusion of L-glutamate causes neurotoxicity in rat striatum. Brain Res. 290: 372–375, 1984.

    Article  PubMed  CAS  Google Scholar 

  45. McGeer E.G., McGeer P.L., Singh K.: Kainate-induced degeneration of neostriatal neurons: Dependency on corticostriatal tract. Brain Res. 139: 381–383, 1978.

    Article  PubMed  CAS  Google Scholar 

  46. Olney J.W.: Neurotoxicity of excitatory amino acids. In: McGeer E.G., Olney J.W., McGeer J.L. (Eds.), Kainic acid as a tool in neurobiology. Raven Press, New York, 1978, pp. 95–121.

    Google Scholar 

  47. Young A.M., Crowder J.M., Bradford H.F.: Potentiation by kainate of excitatory amino acid release in striatum: Complementary in vivo and in vitro experiments. J. Neurochem. 50: 337–345, 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Berdichevsky E., Riveros N., Sanchez-Armass S., Orrego F.: Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro. Neurosci. Lett. 36: 75–80, 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Crowder J.M., Crocher M.J., Bradford H.F., Collins J.F.: Excitatory amino acid receptors and depolarization induced Ca2+ into hippocampal slices. J. Neurochem. 48: 1917–1924, 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Choi D.W.: Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7: 369–379, 1987.

    PubMed  CAS  Google Scholar 

  51. Choi D.W., Maulucci-Gedde M.A., Kregstein A.R.: Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7: 357–368, 1987.

    PubMed  CAS  Google Scholar 

  52. Gonzales R.A., Brown L.M., Jones T.W., Trent R.D., Westbrook S.L., Leslie S.W.: N-Methyl-D-Aspartate mediated responses decrease with age in Fischer 344 rat brain. Neurobiol Aging 12: 219–225, 1991.

    Article  PubMed  CAS  Google Scholar 

  53. Sapolsky R.M.: Glucocorticoid toxicity in the hippocampus. Temporal aspects of synergy with kainic acid. Neuroendocrinology 43: 440–444, 1986.

    CAS  Google Scholar 

  54. Tombaugh G.C., Sapolsky R.M.: Mild acidosis protects hippocampal neurons from injury induced by oxygen and glucose deprivation. Brain Res. 506: 343–345, 1990.

    Article  PubMed  CAS  Google Scholar 

  55. Kerr D.S., Campbell L.W., Hao S.Y., Landfield P.W.: Corticosteroid modulation of hippocampal potentials: Increased effect with aging. Science 245: 1505–1509, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Battaini F., Govoni S., Rius R.A., Trabucchi M.: Age-dependent increase in [3H]verapamil binding to rat cortical membranes. Neurosci. Lett. 61: 67–71, 1985.

    Article  PubMed  CAS  Google Scholar 

  57. Landfield P.W.: Hippocampal neurobiological mechanisms of age-related memory dysfunction: Neurobiol. Aging 9: 571–579, 1988.

    CAS  Google Scholar 

  58. Landfield P.W., Morgan G.A.: Chronically elevating plasma Mg2+ improves hippocampal frequency potentiation and reversal learning in aged and young rats. Brain Res. 322: 167–171, 1984.

    Article  PubMed  CAS  Google Scholar 

  59. Landfield P.W., Pitler T.A.: Prolonged Ca2+-dependent after hyperpolarizations in hippocampal neurons of aged rats. Science 226: 1089–1092, 1984.

    Article  PubMed  CAS  Google Scholar 

  60. Choi D.W.: Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. TINS 11: 465–469, 1988.

    PubMed  CAS  Google Scholar 

  61. Mattson M.P., Guthrie P.B., Kater S.B.: A role for Na+-dependent Ca2+ extrusion in protection against neuronal excitotoxicity. FASEBJ. 3: 2529–2526, 1989.

    Google Scholar 

  62. Murphy T.H., Schnaar R.L., Coyle J.T.: Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J. 4: 1624–1633, 1990.

    PubMed  CAS  Google Scholar 

  63. Halliwell B.: Oxidants and human disease: some new concepts. FASEB J. 1: 358–364, 1987.

    PubMed  CAS  Google Scholar 

  64. Harman D.: The aging process. Proc. Natl. Acad. Sci. USA 78: 7124–7128, 1981.

    Article  PubMed  CAS  Google Scholar 

  65. Cadet J.L., Lohr J.B., Jeste D.V.: Free radicals and tardive dyskinesia. TINS 9: 107–108, 1986.

    CAS  Google Scholar 

  66. Parsons P.G.: Modification of Dopa toxicity in human tumor cells. Biochem. Pharmacol 34:1801–1807,1985.

    CAS  Google Scholar 

  67. Graham D.G., Tiffany S.M., Bell W.R., Gutknecht W.F.: Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C 1300 neuroblastoma cell in vitro. Mol. Pharmacol. 14: 644–653, 1978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, J.A., Gupta, M., Han, Z. et al. The deleterious effects of aging and kainic acid may be selective for similar striatal neuronal populations. Aging Clin Exp Res 3, 361–371 (1991). https://doi.org/10.1007/BF03324037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324037

En]Keywords

Navigation