Skip to main content
Log in

Oxygen isotope evidence for two-stage water-rock interactions of the Nianzishan A-type granite in NE China

  • Papers
  • Published:
Chinese Science Bulletin

Abstract

The oxygen isotope ratios of whole-rock, common rock-forming minerals and zircon from Mesozoic A-type granitic pluton at Nianzishan in northeastern China were analyzed by the conventional BrF5 method and the laser-probe technique, respectively. Both whole-rock and rock-forming minerals show large δ18O variations up to 5.5‰ with significant oxygen isotope disequilibrium between zircon and the other minerals, whereas the δ18O values of zircon are tightly clustered between 3.12‰ and 4.19‰ and thus lower than the normal-mantle δ18O values. These results indicate that the Nianzishan A-type granite experienced two-stage water-rock interactions subsequentially. The remarkably low zircon δ18O values are genetically due to seawater exchange with granite protolith in the first stage, and the oxygen isotope disequilibrium fractionations between zircon and rock-forming minerals are caused by meteoric-hydrothermal alteration in the second stage. It is inferred that the18O-depleted A-type granitic magma was derived from partial melting of subducted lower oceanic crust which was isotopically exchanged with seawater at high temperatures. In the process of granite emplacement into the upper crust, meteoric-hydrothermal circulation was triggered to overprint crystallizing granite under subsolidus conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javoy, M., Weis, D., Oxygen isotopic composition of alkaline anorogenic granites as a clue to their origin: the problem of crustal oxygen, Earth Planet. Sci. Lett., 1987, 84: 415.

    Article  Google Scholar 

  2. King, E. M., Barrie, C. T., Valley, J. W., Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: Magmatic values are preserved in zircon, Geology, 1997, 25: 1079.

    Article  Google Scholar 

  3. Speer, J. A., Zircon (ed. Ribbe, P. H.), Orthosilicates, Rev. Mineral., 1982,5: 67.

  4. Valley, J. W., Chiarenzelli, J. R., McLelland, J. M., Oxygen isotope geochemistry of zircon, Earth Planet. Sci. Lett., 1994, 126: 187.

    Article  Google Scholar 

  5. King, E. M., Valley, J. W., Davis, D. W. et al., Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: Indicator of magmatic source, Precam. Res., 1998, 92: 47.

    Article  Google Scholar 

  6. Sharp, Z. D., A laser-based microanalytic method for thein situ determination of oxygen isotope ratios of silicates and oxides, Geochim. Cosmochim. Acta, 1990, 54: 1353.

    Article  Google Scholar 

  7. Elsenheimer, D., Valley, J. W.,In situ oxygen isotope analysis of feldspar and quartz by Nd-YAG laser microprobe, Chem. Geol., 1992, 101: 21.

    Google Scholar 

  8. Wiechert, U., Hoefs, J., An excimer laser-based microanalytical preparation technique forin situ oxygen isotope analysis of silicate and oxide minerals, Geochim. Cosmochim. Acta, 1995, 59: 4093.

    Article  Google Scholar 

  9. Spicuzza, M. J., Valley, J. W., Kohn, M. J. et al., The rapid heating, defocused beam technique: a CO2-laser-based method for highly precise and accurate determination of δ18O values of quartz, Chem. Geol., 1998, 144: 195.

    Article  Google Scholar 

  10. Li, P. Z., Shen, Y. L., Li, C. L. et al., δ18O contours and ancient fossil hydrothermal system of miarolitic alkaline granite, Nianzishan, Heilongjiang, Science in China, Ser. B, 1991, 34: 732.

    Google Scholar 

  11. Li, P. Z., Yu, F. J., Liu, D. P. et al., The relationship between δD and magma degassing of the Nianzishan miarolitic alkaline granite, Heilongjiang, Geochimica (in Chinese with English abstract), 1992(1): 70.

  12. Wei, C. S., Zheng, Y. F., Zhao, Z. F., Hydrogen and oxygen isotopes of alkaline granites distributed along continental margins in eastern China and geodynamic implications, Acta Geophysica Sinica (in Chinese with English abstract), 1998, 41(Suppl.): 169.

    Google Scholar 

  13. Valley, J. W., Kitchen, N., Kohn, M. J. et al., UWG-2, a garnet standard for oxygen isotope ratio: Strategies for high precision and accuracy with laser heating, Geochim. Cosmochim. Acta, 1995, 59: 5223.

    Article  Google Scholar 

  14. Criss, R. E., Gregory, R. T., Taylor, H. P. Jr., Kinetic theory of oxygen isotope exchange between minerals and water, Geochim. Cosmochim. Acta, 1987, 51: 952.

    Article  Google Scholar 

  15. Gregory, R. T., Criss, R. E., Taylor, H. P. Jr., Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formation, Chem. Geol., 1988, 75: 1.

    Article  Google Scholar 

  16. Taylor, H. P. Jr., Oxygen, hydrogen, and strontium isotope constraints on the origin of granites, Trans. Roy. Soc. Edinburgh Earth Sci., 1988, 79: 31.

    Google Scholar 

  17. Cole, D. R., Ohmoto, H., Kinetics of isotopic exchange at elevated temperatures and pressures (eds. Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R.), Stable isotopes in high temperature geological processes, Rev. Mineral., 1986, 16: 41.

    Google Scholar 

  18. Wei, C. S., Zheng, Y. F., Zhao, Z. F., The hydrogen and oxygen isotope geochemistry of the Suzhou A-type granite, Acta Petrologica Sinica (in Chinese with English abstract), 1999, 15: 224.

    Google Scholar 

  19. Zheng, Y. F., Calculation of oxygen isotope fractionation in anhydrous silicate minerals, Geochim. Cosmochim. Acta, 1993, 57: 1079.

    Article  Google Scholar 

  20. Zheng, Y. F., Oxygen isotope fractionation in magnetites: structural effect and oxygen inheritance, Chem. Geol., 1995, 121: 309.

    Article  Google Scholar 

  21. Harmon, R. S., Hoefs, J., Oxygen isotope heterogeneity of the mantle deduced from global18O systematics of basalts from different geotectonic settings, Contrib. Mineral. Petrol., 1995, 120: 95.

    Article  Google Scholar 

  22. Valley, J. W., Kinny, P. D., Schulze, D. J. et al., Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts, Contrib. Mineral. Petrol., 1998, 133: 1.

    Article  Google Scholar 

  23. Gilliam, C. E., Valley, J. W., Low δ18O magmas, Isle of Skye, Scotland: Evidence from zircons, Geochim. Cosmochim. Acta, 1997, 61: 4975.

    Article  Google Scholar 

  24. Watson, E. B., Cherniak, D. J., Oxygen diffusion in zircon, Earth Planet. Sci. Lett., 1997, 148: 527.

    Article  Google Scholar 

  25. Zheng, Y. F., Fu, B., Estimation of oxygen diffusivity from anion porosity in minerals, Geochem. J., 1998, 32: 71.

    Google Scholar 

  26. Muehlenbachs, K., Alteration of the oceanic crust and the 18O history of seawater (eds. Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R.), Stable isotopes in high temperature geological processes, Rev. Mineral., 1986,16:425.

    Google Scholar 

  27. McCulloch, M. T., Gregory, R. T., Wasserburg, G. J. et al., A neodymium, strontium, and oxygen isotope study of the Cretaceous Semail ophiolite and implications for the petrogenesis and sea water-hydrothermal alteration of oceanic crust, Earth Planet. Sci. Lett., 1980, 46: 201.

    Article  Google Scholar 

  28. Hart, S. R., Blusztajn, J., Dick, J. B. et al., The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros, Geochim. Cosmochim. Acta, 1999, 63: 4059.

    Article  Google Scholar 

  29. Hilde, W. C., Uyeda, S., Kroenke, L., Evolution of the western Pacific and its margin, Tectonophys., 1977, 38: 145.

    Article  Google Scholar 

  30. Ma, X., Lithospheric dynamics of China, Episodes, 1988, 11: 84.

    Google Scholar 

  31. Friedman, I., Lipman, P. W., Obradovich, J. D. et al., Meteoric water in magmas, Science, 1974, 184: 1069.

    Article  Google Scholar 

  32. Hildreth, W., Christiansen, R. L., O’Neil, J. R., Catastrophic isotope modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau Volcanic Field, Jour. Geophys. Res., 1984, 89: 8339.

    Google Scholar 

  33. Taylor, H. P. Jr., Sheppard, S. M. F., Igneous rocks: I. Processes of isotopic fractionation and isotopic systematics (eds. Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R.), Stable isotopes in high temperature geological processes, Rev. Mineral., 1986, 16: 227.

    Google Scholar 

  34. Balsley, S. D., Gregory, R. T., Low-δ18O magmas: Why are they so rare? Earth Planet. Sci. Lett., 1998, 168: 123.

    Article  Google Scholar 

  35. Bacon, C. R., Adami, L. H., Lanphere, M. A., Direct evidence for the origin of low-δ18O silicic magmas: Quenched samples of a magma chamber’s partially fused granitoid walls, Crater Lake, Orogen, Earth Planet. Sci. Lett., 1989, 96: 199.

    Google Scholar 

  36. Bindeman, I. N., Valley, J. W., Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA, Geology, 2000, 28: 719.

    Article  Google Scholar 

  37. Watson, E. B., Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geologic models and implications for isotopic inheritance, Trans. Roy. Soc. Edinburgh Earth Sci., 1996, 87: 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Wei.

About this article

Cite this article

Wei, C., Zheng, Y., Zhao, Z. et al. Oxygen isotope evidence for two-stage water-rock interactions of the Nianzishan A-type granite in NE China. Chin.Sci.Bull. 46, 727–731 (2001). https://doi.org/10.1007/BF03187208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03187208

Keywords

Navigation