Skip to main content
Log in

Fluid flow and weld penetration in stationary arc welds

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Weld pool fluid flow can affect the penetration of the resultant weld significantly. In this work, the computer simulation of weld pool fluid flow and its effect on weld penetration was carried out. Steady-state, 2-dimensional heat and fluid flow in stationary arc welds were computed, with three driving forces for fluid flow being considered: the buoyancy force, the electromagnetic force, and the surface tension gradient at the weld pool surface. The computer model developed agreed well with available analytical solutions and was consistent with weld convection phenomena experimentally observed by previous investigators and the authors. The relative importance of the influence of the three driving forces on fluid flow and weld penetration was evaluated, and the role of surface active agents was discussed. The effects of the thermal expansion coefficient of the liquid metal, the current density distribution in the workpiece, and the surface tension temperature coefficient of the liquid metal on weld pool fluid flow were demonstrated. Meanwhile, a new approach to free boundary problems involving simultaneous heat and fluid flow was developed, and the effort of computation was reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Woods and D. R. Milner:Welding Journal, 1971, vol. 50, p. 163s.

    Google Scholar 

  2. C. R. Heiple and J. R. Roper:Welding Journal, 1982, vol. 61, p. 97s.

    Google Scholar 

  3. C.R. Heiple and J. R. Roper:Trends in Welding Research in the United States, S.A. David, ed., TMS, Metals Park, OH, 1982, p. 489.

    Google Scholar 

  4. B.C. Allen: inLiquid Metals— Chemistry and Physics, S.Z. Beer, ed., M. Dekker, Inc., New York, NY, 1972, chap. 4, pp. 161–212.

    Google Scholar 

  5. W. H.S. Lawson and H. W. KernWelding Research International, 1976, vol. 6, Paper No. 6.

  6. C. Sozou and W. M. Pickering:J. Fluid Mech., 1976, vol. 73, part 4, p. 641.

    Article  Google Scholar 

  7. J. G. Andrews and R. E. Crane:J. Fluid Mech., 1978, vol. 84, part 2, p. 281.

    Article  Google Scholar 

  8. D. R. Atthey:J. Fluid Mech., 1980, vol. 98, part 4, p. 787.

    Article  CAS  Google Scholar 

  9. G.M. Oreper, T. W. Eagar, and J. Szekely:Welding Journal, 1983, vol. 62, p. 307s.

    Google Scholar 

  10. C. Chan, J. Mazumder, and M. M. Chen:Metall. Trans. B, in press.

  11. R.B. Bird, W. E. Stewart, and E. N. Lightfoot:Transport Phe- nomena, John Wiley, New York, NY, 1960, p. 79 and p. 314.

    Google Scholar 

  12. J. Szekely:Fluid Flow Phenomena in Metals Processing, Academic Press, New York, NY, 1979, p. 178.

    Google Scholar 

  13. W. F. Hughes and F. J. Young:The Electromagnetodynamics of Fluids, John Wiley, New York, NY, 1966, chap. 7, pp. 167–287.

    Google Scholar 

  14. J. D. Jackson:Classical Electrodynamics, 2nd ed., John Wiley, New York, NY, 1975, chap. 3, pp. 84–128.

    Google Scholar 

  15. N. S. Tsai: “Heat Flow in Arc Welding≓, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983.

    Google Scholar 

  16. V. Pavelic, L. R. Tanbakuchi, O. A. Oyehara, and P. S. Myers:Weld- ing Journal, 1969, vol. 48, p. 295s.

    Google Scholar 

  17. E. Friedman: inNumerical Modeling of Manufacturing Processes, R. F. Jones, Jr., ed., ASME, New York, NY, 1977, p. 35.

    Google Scholar 

  18. S.S. Glickstein, E. Friedman, and W. Yensicavich:Welding Journal, 1975, vol. 54, p. 113s.

    Google Scholar 

  19. Y. Sharir, A. Grill, and J. Pelleg:Metall. Trans. B, 1980, vol. 11B, p. 257.

    Article  Google Scholar 

  20. A. Grill:Metall. Trans. B, 1981, vol. 12B, p. 667.

    Article  CAS  Google Scholar 

  21. S. Kou:Metall. Trans. A, 1981, vol. 12A, p. 2025.

    Google Scholar 

  22. S. Kou and Y. Le:Metall. Trans. A, 1983, vol. 14A, p. 2245.

    CAS  Google Scholar 

  23. O.H. Nestor:J. of Appl. Phys., 1962, vol. 33, p. 1638.

    Article  Google Scholar 

  24. C. B. Shaw, Jr.:Welding Journal, 1980, vol. 59, p. 121s.

    Google Scholar 

  25. D. Rosenthal:Welding Journal, 1941, vol. 20, p. 220s.

    Google Scholar 

  26. S. V. Patankar and D. B. Spalding:International Journal of Heat and Mass Transfer, 1972, vol. 15, p. 1787.

    Article  Google Scholar 

  27. S. V. Patankar and D. B. Spalding:Proc. 14th Symp. on Combustion, The Combustion Inst., Shefield, U.K., 1972, p. 605.

    Google Scholar 

  28. L. S. Caretto, A.D. Gosman, S.V. Patankar, and D. B. Spalding:Proc. 3rd Int. Conf. Num. Methods Fluid Dyn., Paris, France, 1972, vol. II, p. 60.

  29. S. V. Patankar: inStudies in Convection: Theory, Measurement and Applications, B.E. Launder, ed., Academic Press, New York, NY, 1975, vol. 1.

    Google Scholar 

  30. F. H. Harlow and J.E. Welch:Phys. Fluids, 1965, vol. 8, p. 2182.

    Article  Google Scholar 

  31. L. S. Caretto, R. M. Curr, and D. B. Spalding:Comp. Methods Appl. Mech. Eng., 1972, vol. 1, p. 39.

    Article  Google Scholar 

  32. Aluminum Standards and Data, 5th ed., The Aluminum Association, New York, NY, 1976, p. 38 and p. 40.

  33. Aluminum, K.R. Van Horn, ed., ASM, 1967, vol. I, chap. 1, pp. 1-30.

  34. J.K. Brimacombe and F. Weinberg:Metall. Trans., 1972, vol. 3, p. 2298.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kou, S., Sun, D.K. Fluid flow and weld penetration in stationary arc welds. Metall Trans A 16, 203–213 (1985). https://doi.org/10.1007/BF02815302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815302

Keywords

Navigation