Skip to main content
Log in

Loading rate and test temperature effects on fracture ofIn Situ niobium silicide-niobium composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Arc cast, extruded, and heat-treatedin situ composites of niobium suicide (Nb5Si3) intermetallic with niobium phases (primary—Nbp and secondary—Nbs) exhibited high fracture resistance in comparison to monolithic Nb5Si3. In toughness tests conducted at 298 K and slow applied loading rates, the fracture process proceeded by the microcracking of the Nb5Si3 and plastic deformation of the Nbp and Nbs phases, producing resistance-curve behavior and toughnesses of 28 MPa√m with damage zone lengths less than 500μm. The effects of changes in the Nbp yield strength and fracture behavior on the measured toughnesses were investigated by varying the loading rates during fracture tests at both 77 and 298 K. Quantitative fractography was utilized to completely characterize each fracture surface created at 298 K in order to determine the type of fracture mode (i.e., dimpled, cleavage) exhibited by the Nbp. Specimens tested at either higher loading rates or lower test temperatures consistently exhibited a greater amount of cleavage fracture in the Nbp, while the Nbs, always remained ductile. However, the fracture toughness values determined from experiments spanning six orders of magnitude in loading rate at 298 and 77 K exhibited little variation, even under conditions when the majority of Nbp phases failed by cleavage at 77 K. The changes in fracture mode with increasing loading rate and/or decreasing test temperature and their effects on fracture toughness are rationalized by comparison to existing theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. High Temperature Structural Silicides: Proceedings of the First High Temperature Structural Silicides Workshop, Gaithersburg, MD, Nov. 4–6, 1991, A.K. Vasudevan and J.J. Petrovic, eds.,Mater. Sci. Eng. A, 1992, vol. A155.

  2. R. L. Fleischer:J. Mater. Sci., 1987, vol. 22, pp. 2281–88.

    Article  CAS  Google Scholar 

  3. Binary Alloy Phase Diagrams, T. B. Massalski, ed., ASM, Metals Park, OH, 1986, vols. 1-2.

    Google Scholar 

  4. G. Stauthoff:Z Metallkde., 1986, vol. 77, pp. 654–66.

    Google Scholar 

  5. J. Kajuch, J. D. Rigney, and J. J. Lewandowski:Mater. Sci. Eng. A, 1992, vol. A155, p. 59.

    CAS  Google Scholar 

  6. R. M. Nekkanti and D. M. Dimiduk:Intermetallic Matrix Composites, Mater. Res. Soc. Symp. Proc., Boston, MA, Materials Research Society, Pittsburgh, PA, 1990, vol. 194, p. 175.

    Google Scholar 

  7. M. G. Mendiratta, J. J. Lewandowski, and D. M. Dimiduk:Metall. Trans. A, 1991, vol. 22A, pp. 1573–83.

    CAS  Google Scholar 

  8. D. M. Dimiduk, P. R. Subramanian and M. G. Mendiratta: Acta Metall. Sinica, 1995, vol. 8, pp. 519–530.

    CAS  Google Scholar 

  9. J. Kajuch, J. Short, and J. J. Lewandowski:Acta Metall. Mater., 1995, vol. 43, pp. 1955–67.

    Article  CAS  Google Scholar 

  10. M. G. Mendiratta and D. M. Dimiduk:Scripta Metall Mater., 1991, vol. 25, pp. 237–42.

    Article  CAS  Google Scholar 

  11. B. P. Bewlay, M. R. Jackson, H. A. Lipsitt, W. J. Reeder, J. A. Sutcliff: 1996 AFOSR Final Report No. F49620-93-C-0007, General Electric Company, Corporate Research and Development Center, Schenectady, NY, 1996.

    Google Scholar 

  12. Annual Book of ASTM Standards, ASTM Designation E399-83, ASTM, Philadelphia, PA, 1988, vol. 03.01, p. 480.

  13. J. R. Griffiths and W. S. Owens:J. Mech. Phys. Solids, 1971, vol. 19, p. 419–431.

    Article  Google Scholar 

  14. M. G. Mendiratta, R. Goetz, D. M. Dimiduk, and J. J. Lewandowski:Metall. Mater. Trans. A., 1995, vol. 26A, pp. 1767–77.

    CAS  Google Scholar 

  15. J. D. Rigney: Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, 1994.

    Google Scholar 

  16. V. D. Krstic:Philos. Mag. A, 1983, vol. 48, pp. 695–708.

    Article  CAS  Google Scholar 

  17. B. Budianski, J. C. Amazigo, and A. G. Evans:J. Mech. Phys. Solids, 1988, vol. 36, p. 167.

    Article  Google Scholar 

  18. L. S. Sigl, P. A. Mataga, B. J. Dalgleish, R. M. McMeeking, A. G. Evans:Acta Metall, 1988, vol. 36, pp. 945–53.

    Article  CAS  Google Scholar 

  19. P. A. Mataga:Acta Metall, 1989, vol. 37, pp. 3349–59.

    Article  CAS  Google Scholar 

  20. M. Nakamura and J. Gurland:Metall. Trans. A, 1980, vol. 11 A, pp. 141–46.

    Google Scholar 

  21. V. D. Krstic and M. Komac:Philos. Mag. A, 1985, vol. 51, pp. 191–203.

    CAS  Google Scholar 

  22. V. D. Krstic, P. S. Nicholson, and R. G. Hoagland:J. Am. Ceram. Soc., 1981, vol. 64, p. 499.

    Article  CAS  Google Scholar 

  23. M.F. Ashby, F.J. Blunt, and M. Bannister:Acta Metall, 1989, vol. 37, pp. 1847–57.

    Article  CAS  Google Scholar 

  24. M. A. Adams, A. C. Roberts, and R. E. Smallman:Acta Metall, 1960, vol. 8, pp. 328–37.

    Article  CAS  Google Scholar 

  25. A. A. Johnson:Acta Metall, 1960, vol. 8, pp. 737–40.

    CAS  Google Scholar 

  26. A. A. Johnson: inNiobium, Tantalum, Molybdenum and Tungsten, A. G. Quarrell, ed., Elsevier, New York, NY, 1961, p. 277.

    Google Scholar 

  27. A. T. Churchman:J. Inst. Met., 1959-60, vol. 88, pp. 221–22.

    Google Scholar 

  28. P. R. V. Evans:J. Less-Common Met., 1962, vol. 4, pp. 78–91.

    Article  CAS  Google Scholar 

  29. Z. C. Szkopiak:J. Less-Common Met., 1970, vol. 21, pp. 383–93.

    Article  CAS  Google Scholar 

  30. M. G. Mendiratta and D. M. Dimiduk:Metall. Trans. A, 1993, vol. 24A, pp. 501–04.

    CAS  Google Scholar 

  31. J. R. Rice and G. F. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  32. T. L. Briggs and J. D. Campbell:Acta Metall, 1972, vol. 20, pp. 711–24.

    Article  CAS  Google Scholar 

  33. G. A. Sargent:Acta Metall, 1965, vol. 13, pp. 663–71.

    Article  CAS  Google Scholar 

  34. A. G. Imgram, F. C. Holden, H. R. Ogden, and R. I. Jaffee:Trans. TMS-AIME, 1961, vol. 221, pp. 517–26.

    CAS  Google Scholar 

  35. A. G. Imgram, E. S. Bartlett, and H. R. Ogden:Trans. TMS-AIME, 1963, vol. 227, pp. 131–36.

    CAS  Google Scholar 

  36. A. L. Mincher and W. F. Sheeley:Trans. TMS-AIME, 1961, vol. 221, pp. 19–25.

    CAS  Google Scholar 

  37. H. Tada, P. C. Paris, and G. R. Irwin:The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA, 1973.

    Google Scholar 

  38. H. C. Cao, B. J. Dalgleish, H. E. Déve, C. Elliott, A. G. Evans, R. Mehrabian, G. R. Odette:Acta Metall. Mater., 1989, vol. 37, pp. 2969–77.

    Article  CAS  Google Scholar 

  39. A. B. Samant: Master’s Thesis, Case Western Reserve University, Cleveland, OH, 1995.

    Google Scholar 

  40. A. H. Cottrell:Trans. TMS-AIME, 1958, vol. 212, pp. 192–202.

    CAS  Google Scholar 

  41. J. F. Knott:Fundamentals of Fracture Mechanics, Butterworth and Co., London, 1973.

    Google Scholar 

  42. J.J. Lewandowski and A. W. Thompson:Metall. Trans. A, 1986, vol. 17A, pp. 1769–86.

    CAS  Google Scholar 

  43. L. B. Freund and J. W. Hutchinson:J. Mech. Phys. Solids, 1985, vol. 33, pp. 169–91.

    Article  Google Scholar 

  44. G. C. Sih: inInelastic Behavior of Solids, M. F. Kanninen, W. F. Adler, A. R. Rosenfield, R. L. Jaffee, eds., McGraw-Hill, New York, NY, 1970, p. 607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Materials Science and Engineering, the Case School of Engineering, Case Western Reserve University, and Postdoctoral Research Associate, the Materials Department, Oxford University, Oxford, 0X1 3PH England

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigney, J.D., Lewandowski, J.J. Loading rate and test temperature effects on fracture ofIn Situ niobium silicide-niobium composites. Metall Mater Trans A 27, 3292–3306 (1996). https://doi.org/10.1007/BF02663879

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663879

Keywords

Navigation