Skip to main content
Log in

Agrobacterium-mediated transformation of peach (Prunus persica L. batsch) leaf segments, immature embryos, and long-term embryogenic callus

  • Plant Cellular and Developmental Biology
  • Published:
In Vitro Cellular &Developmental Biology Aims and scope Submit manuscript

Summary

Peach leaf segments, immature embryos, and long-term embryogenic calli have been transformedin vitro with the engineeredAgrobacterium tumefaciens strain A281 containing pGA472. All three tissue sources proliferated callus which grew on a medium containing 100–200 mg/l kanamycin or 10–20 mg/l G-418 as selective agents. These calli were shown to produce neomycin phosphotransferase. The results of Southern analyses were consistent with the incorporation of foreign DNA into the genome of leaf, embryo and embryogenic peach callus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, G.; Watson, B. D.; Stachel, S., et al. New cloning vehicles for transformation of higher plants. EMBO J. 4: 277–284; 1985.

    PubMed  CAS  Google Scholar 

  2. Beachy, R. N.; Chen, Z. L.; Horsch, R. B., et al. Accumulation and assembly of soybean beta-conglycinin in seeds of transformed petunia plants. EMBO J. 4: 3047–3053; 1985.

    PubMed  CAS  Google Scholar 

  3. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  4. Cuozzo, M.; O'Connell, K. M.; Kaniewski, W., et al. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Biotechnology 6: 549–557; 1988.

    Article  CAS  Google Scholar 

  5. Filatti, J. J.; Sellmer, J.; McCown, B., et al.Agrobacterium-mediated transformation and regeneration ofPopulus. Mol. Gen. Genet. 206:192–199; 1987.

    Article  Google Scholar 

  6. Fischoff, D. A.; Bowdish, K. S.; Perlak, F. J., et al. Insect tolerant transgenic tomato plants. Biotechnology 5: 807–813; 1987.

    Article  Google Scholar 

  7. Giovanni, J. J.; DellaPenna, D.; Bennett, A. B., et al. Expression of a chimeric polygalacturonase gene in transgenicrin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. The Plant Cell 1: 53–63; 1989.

    Article  Google Scholar 

  8. Hammerschlag, F. A.; Bauchan, G.; Scorza, R. Regeneration of peach plants from callus derived from immature embryos. Theor. Appl. Genet. 70: 248–251; 1985.

    Article  Google Scholar 

  9. Hammerschlag, F. A.; Owens, L. D.; Smigocki, A. C.Agrobaterium-mediated transformation of peach cells derived from mature plants that were propagatedin vitro. J. Amer. Soc. Hort. Sci. 114: 508–510; 1989.

    Google Scholar 

  10. James, D. J.; Passey, A. J.; Barbara, D. J., et al. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658–661; 1989.

    CAS  Google Scholar 

  11. Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular cloning, a laboratory manual. Cold Spring Harbor Lab Press, NY: 1982.

    Google Scholar 

  12. McDonnell, R. E.; Clark, R. D.; Smith, W. A., et al. A simplified method for the detection of neomycin phosphotrans-ferase II activity in transformed plant tissues. Plant Mol. Biol. Reptr. 5: 380–386; 1987.

    Article  CAS  Google Scholar 

  13. McGranahan, G. H.; Leslie, C. A.; Uratsu, S. L., et al.Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Biotechnology 6: 800–804; 1988.

    Article  CAS  Google Scholar 

  14. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  15. Nelson, R. S.; McCormick, S. M.; Delannay, Z. X., et al. Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Biotechnology 6: 403–409; 1988.

    Article  Google Scholar 

  16. Rao, R. N.; Rogers, S. G. Plasmid pKC7: a vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7: 79–82; 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Scorza, R.; Cordts, J. M.; Callahan, A. M., et al. Regeneration of peach from somatic embryos/Agrobacterium tumefaciens-mediated transformation of peach tissue. In: Hanover, J. W.; Keathley, D. E., eds, Genetic Manipulation of Woody Plants. New York: Plenum Press; 1988; 481.

    Google Scholar 

  18. Scorza, R.; Cordts, J. M.; Mante, S. Long-term somatic embryo production and plant regeneration from embryo-derived peach callus. Proc. Int. Symp. In Vitro Culture and Hort. Breeding, Act Hort; 1990 (in press).

  19. Van der Krol, A. R.; Lenting, P. E.; Veenstra, J., et al. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869; 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scorza, R., Morgens, P.H., Cordts, J.M. et al. Agrobacterium-mediated transformation of peach (Prunus persica L. batsch) leaf segments, immature embryos, and long-term embryogenic callus. In Vitro Cell Dev Biol 26, 829–834 (1990). https://doi.org/10.1007/BF02623625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623625

Key words

Navigation