Skip to main content
Log in

Effect of thermosolutal convection on microstructure formation in the Pb-Bi peritectic system

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experimental studies have been conducted in the two-phase region of the Pb-Bi peritectic system to investigate the effect of thermosolutal convection on the banded microstructure. A systematic study is carried out by varying convection effects through the use of thin cylindrical samples of different diameters. A strong oscillatory convection is found in a 6.0-mm-diameter sample that produces a large treelike primary phase in the center of the sample that is surrounded by the peritectic phase matrix. The length of the treelike structure is found to decrease as the diameter of a sample is reduced to 0.8 mm. When the sample diameter is further reduced to 0.4 mm, laminar flow is present that gives rise to discrete bands of the two phases. The banded microstructure, however, is found to be transient and only the peritectic phase forms after a few bands. Composition variations in the banded structure are measured to determine the nucleation undercoolings for both phases and to characterize the banding cycle. The banding cycle is determined by the nucleation undercoolings and is independent of convection in the melt, but the banding window closely depends on convection. The presence of the transient banding process is analyzed by using a boundary layer model, and the number of transient bands is found to agree with the model for samples of different compositions and lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kerr and W. Kurz:Int. Mater. Rev., 1996, vol. 41, pp. 129–64.

    CAS  Google Scholar 

  2. W.J. Boettinger:Metall. Trans., 1974, vol. 5, pp. 2023–31.

    CAS  Google Scholar 

  3. O. Hunziker, M. Vandyoussefi, and W. Kurz:Acta Mater., 1998, vol. 46, pp. 6325–36.

    Article  CAS  Google Scholar 

  4. T. Lograsso, B.C. Fuh, and R. Trivedi:Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1287–1300.

    CAS  Google Scholar 

  5. J.-H. Lee and J.D. Verhoeven:J. Cryst. Growth, 1994, vol. 144, pp. 353–66.

    Article  CAS  Google Scholar 

  6. M. Vandyoussefi, H.W. Kerr, and W. Kurz:Acta Mater., 2000, vol. 48, pp. 2297–2306.

    Article  CAS  Google Scholar 

  7. T.-S. Lo, S. Dobbler, M. Plapp, A. Karma, and W. Kurz:Acta Mater., 2000, vol. 51, pp. 599–611.

    Article  Google Scholar 

  8. S. Dobbler, A. Karma, M. Plapp, and W. Kurz:Acta Mater., 2004, vol. 52, pp. 2795–2808.

    Article  Google Scholar 

  9. R. Trivedi and J.H. Shin:Mater. Sci. Eng., A, 2005, vols. 413–414, pp. 288–95.

    Google Scholar 

  10. R. Trivedi:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1583–90.

    CAS  Google Scholar 

  11. J.S. Park and R. Trivedi:J. Cryst. Growth, 1998, vol. 187, pp. 511–15.

    Article  CAS  Google Scholar 

  12. R. Trivedi and J.S. Park:J. Cryst. Growth, 2002, vol. 235, pp. 572–88.

    Article  CAS  Google Scholar 

  13. T.-S. Lo, M. Plapp, and A. Karma:Phys. Rev. E, 2001, vol. 63, pp. 031504/1–15.

    Google Scholar 

  14. P. Mazumder, R. Trivedi, and A. Karma:Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1233–46.

    CAS  Google Scholar 

  15. A. Karma, W.-J. Rappel, B.C. Fuh, and R. Trivedi:Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1457–70.

    CAS  Google Scholar 

  16. S.R. Coriell, M.R. Cordes, W.J. Boettinger, and R.F. Sekerka:J. Cryst. Growth, 1980, vol. 49, pp. 13–28.

    Article  CAS  Google Scholar 

  17. C. Le Marek, R. Guerin, and P. Haldenweg:J. Cryst. Growth, 1966, vol. 169, pp. 147–56.

    Article  Google Scholar 

  18. T.H. Solomon, R.R. Hartley, and A.T. Lee:Phys. Rev. E, 1999, vol. 60, pp. 3063–71.

    Article  CAS  Google Scholar 

  19. R. Trivedi, P. Mazumder, and S. Tewari:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3763–75.

    CAS  Google Scholar 

  20. W. Nernst:Z. Phys. Chem., 1904, vol. 47, pp. 52–5.

    CAS  Google Scholar 

  21. J.A. Burton, R.C. Prim, and W.P. Schlichter:J. Chem. Phys., 1953, vol. 21, pp. 1987–91.

    Article  CAS  Google Scholar 

  22. R. Trivedi and S. Liu:Int. Conf. on Solidification Science and Processing: Outlook for the 21st Century, Bangalore, India, 2001, pp. 18–21.

  23. K. Tokieda, H. Yasuda, and I. Ohnaka:Mater. Sci. Eng., 1999, vol. 262A, pp. 238–45.

    Google Scholar 

  24. N.T. Gladkikh, V.I. Larin, and V.N. Sukhov:Rasplavy, 1993, vol. 5, pp. 8–16.

    Google Scholar 

  25. J.T. Mason: IS-4817 Report, Ames Laboratory, USDOE, Ames, IA 1982.

  26. R. Trivedi, H. Miyahara, P. Mazumder, and E. Simsek:J. Cryst. Growth, 2001, vol. 222, pp. 365–79.

    Article  CAS  Google Scholar 

  27. R. Trivedi, S. Liu, P. Mazumder, and E. Simsek:Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 309–20.

    Article  CAS  Google Scholar 

  28. P. Mazumder and R. Trivedi:Appl. Math. Modeling, 2004, vol. 28, pp. 109–25.

    Article  Google Scholar 

  29. P.G. Boswell, G.A. Chadwick, R. Elliott, and A.R. Sale:Solidification and Casting of Metals, The Metals Society, London, 1979, pp. 175–78.

    Google Scholar 

  30. R. Trivedi:Scripta Mater., 2005, vol. 53, pp. 47–52.

    Article  CAS  Google Scholar 

  31. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers:Acta Metall., 1953, vol. 1, pp. 428–37.

    Article  CAS  Google Scholar 

  32. S. Liu, S. Lu, and A. Hellawell:J. Cryst. Growth, 2002, vol. 234, pp. 740–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Trivedi, R. Effect of thermosolutal convection on microstructure formation in the Pb-Bi peritectic system. Metall Mater Trans A 37, 3293–3304 (2006). https://doi.org/10.1007/BF02586164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586164

Keywords

Navigation