Skip to main content
Log in

A new method for the determination of dissolved sulfide in strongly colored anaerobically treated effluents

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A simple method for dissolved sulfide determination in colored complex media was developed using ion exchange chromatography. Its principle is based on the complete oxidation of an unstable compound (sulfide) into its stable form (sulfate) through a strong oxidant: hydrogen peroxide. The difference between sample analyzed before and after this treatment gives the total dissolved sulfide. In order to avoid H2S exhaust, this oxidation has to be performed immediately after sampling, without cell separation. In that way, standard solutions were prepared using raw anaerobic effluents from an industrial plant. It was shown in the calibration curve that no bacterial interaction was present. Finally, sulfide from continuous and discontinuous digestions of these sulfate rich wastewaters were successfully assayed by this technique. A theoretical evaluation based on Henry's law and the sulfide dissociation equilibrium led to a very good agreement with the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

[SO 2−4 ]in(mmol/l):

Sulfate effluents concentration

[SO 2−4 ]out(mmol/l):

Outgoing sulfate concentration

[S d ]-(mmol/l):

Total dissolved sulfide

[H2S] s (mmol/l):

Soluble free sulfide

[H2S] G (mmol/l):

Gaseous sulfide

% [H2S] G (-):

Fraction of H2S in the gas phase

f (-):

Fraction of free H2S in solution

α (-):

Absorption coefficient,α is 1.74 at 37.5°C

K-(mol):

Sulfide equilibrium constant,K is 1.59 10−7M at 37.5°C

QL(ml/l.d):

Liquid flow

QG(ml/l.d):

Gas flow

TKN(mg/l):

Total Kjeldahl Nitrogen

TOC(mg/l):

Total Organic Carbon

TCOD(mg/l):

Total Chemical Oxygen Demand

SCOD(mg/l):

Soluble Chemical Oxygen Demand

TVFA(mg/l):

Total Volatile Fatty Acids

TSS(mg/l):

Total Suspended Solids

VSS(mg/l):

Volatile Suspended Solids

Vm(1/mol):

Volume of one mole of perfect gas:Vm=25.5 l/mol at 37.5°C

References

  1. Speece, R.E.: Anaerobic biotechnology for industrial wastewater treatment, Environ. Sci. Technol. 17, 9 (1983) 416A-427A

    CAS  Google Scholar 

  2. Hilton, M.G.;Archer, D.B.: Anaerobic digestion of sulfate-rich molasses wastewater: inhibition of hydrogen sulfide production. Biotech. Bioeng. 31 (1988) 885–888

    Article  CAS  Google Scholar 

  3. Yoda, DM.;Imabayashi, S.;Suzuki, N.: Pilot and full-scale experience in anaerobic treatment of brewer's yeast processing wastewater. Wat. Sci. Tech. 23 (1991) 1167–1177

    CAS  Google Scholar 

  4. Reis, M.A.M.; Lemos, P.C.; Carrondo, M.J.T.: Biological sulfate removal of industrial effluents using the anaerobic digestion. In Forum for Applied Biotechnology, Gent, Belgium, (1995) 2701–2707

  5. Shonheit, P.;Kristjansson, J.K.;Thauer, R.K.: Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate Arch. Microbiol. 132 (1982) 285–288

    Article  Google Scholar 

  6. Tursman, J.F.;Cork, D.J.: Biological waste treatment. In Mizrahi, A. (eds) Advances in Biotechnological processes. 12, 1989. Liss, A.R., New York, pp 273–285

    Google Scholar 

  7. Isa, Z.;Grusenmeyer, S.;Verstraete, W.: Sulfate reduction relative to methane production in high-rate anaerobic digestion: Technicals aspects. Appl. Environ. Microbiol. 51, 3 (1986) 572–579

    CAS  Google Scholar 

  8. Isa, Z.;Grusenmeyer, S.;Verstraete, W.: Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbiologicals aspects. Appl. Environ. Microbiol. 51, 3 (1986) 580–587

    CAS  Google Scholar 

  9. Parkin, G.F.;Lynch, N.A.;Kuo, W.C.;Van Keuren, E.L.;Bhattacharya, S.K.: Interaction between sulfate reducers and methanogens fed acetate and propionate. J. Wat. Pollut. Control Fed 62, 6 (1990) 780–788

    CAS  Google Scholar 

  10. Vavilin, V.A.;Vasiliev, V.B.;Rytov, S.V.;Ponomarev, A.V.: Self-oscillating coexistence of methanogens and sulfate-reducers under hydrogen sulfide inhibition and the pH-regulating effect. Biores. Technol. 49 (1994) 105–119

    Article  CAS  Google Scholar 

  11. Mizuno, O.;Li, Y.Y.;Noike, T.: Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate. Wat. Sci. Tech. 30, 8 (1994) 45–54

    CAS  Google Scholar 

  12. Bak, F.;Scheff, G.;Jansen, K.H.: A rapid and sensitive ion Chromatographic technique for the determination of sulfate and sulfate reduction rates in freshwater lake sediments. FEMS Microbiol. Ecology. 85, (1991) 23–30

    CAS  Google Scholar 

  13. Cline, J.D.: Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14 (1969) 454–458

    Article  CAS  Google Scholar 

  14. Cord-Ruwisch, R.: A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods. 4 (1985) 33–36

    Article  CAS  Google Scholar 

  15. Truper, H.G.;Schlegel, H.G.: Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek. 30 (1964) 225–238

    Article  Google Scholar 

  16. Cypionka, H.: Sulfide-controlled continuous culture of sulfatereducing bacteria. J. Microbiol. Methods. 5 (1986) 1–9

    Article  CAS  Google Scholar 

  17. Lovley, D.R.;Dwyer, D.F.;Klug, M.J.: Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol. 43, 6 (1982) 1373–1379

    CAS  Google Scholar 

  18. Rocklin, R.D.;Johnson, E.L.: Determination of cyanide, sulfide, iodide, and bromide by ion chromatography with electrochemical detection. Anal. Chem. 55 (1983) 4–7

    CAS  Google Scholar 

  19. Dalsgaard, T.;Bak, F.: Effect of acetylene on nitrous oxide reduction and sulfide oxidation in batch and gradient cultures of Thiobacillus denitrificans. Appl. Environ. Microbiol. 58, 2 (1992) 1601–1608

    CAS  Google Scholar 

  20. Cypionka, H.;Pfennig, N.: Growth yields of Desulfotomaculum oriental with hydrogen in chemostat culture. Arch. Microbiol. 143 (1986) 396–399

    Article  CAS  Google Scholar 

  21. Polprasert, C.;Haas, C.N.: Effect of sulfate on anaerobic processes fed with dual substrates, Wat. Sci. Tech. 31, 9 (1995) 101–107

    Article  CAS  Google Scholar 

  22. Cord-Ruwisch, R.;Seitz, HJ.;Conrad, R.: The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149 (1988) 350–357

    Article  CAS  Google Scholar 

  23. Winfrey, M.R.;Zeikus, J.G.: Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol. 33, 2 (1977) 275–381

    CAS  Google Scholar 

  24. Yoda, M.;Kitagawa, M.;Miyaji, Y.: Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Wat. Res. 21, 12 (1987) 1547–1556

    Article  CAS  Google Scholar 

  25. Qatibi, A.L.;Bories, A.;Garcia, J.L.: Effects of sulfate on lactate and C2, C3 volatile fatty acid anaerobic degradation by a mixed microbial culture. Antonie van Leeuwenhoek. 58, (1990) 241–248

    Article  CAS  Google Scholar 

  26. Harada, H.;Uemura, S.;Momonoi, K.: Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Wat. Res. 28, 2 (1994) 355–367

    Article  CAS  Google Scholar 

  27. Ronnow, P.H.;Gunnarsson, L.A.H.: Sulfide-dependent methane production and growth of a thermophilic methanogenic bacterium. Appl. Environ. Microbiol. 42, 4 (1981) 580–584

    Google Scholar 

  28. Mounfort, D.O.;Asher, R.A.: Effect of inorganic sulfide on the growth and metabolism of Methanosarcina barkeri strain DM. Appl. Environ. Microbiol. 37, 4 (1979) 670–675

    Google Scholar 

  29. Cappenberg, T.E.: A study of mixed cultures of sulfate-reducing and methane-producing bacteria, Microbial Ecol. 2 (1975) 60–72

    Article  Google Scholar 

  30. Ueki, K.;Ueki, A.;Simogoh, Y.: Terminal steps in the anaerobic digestion of municipal sewage sludge: Effects of inhibitors of methanogenesis and sulfate reduction. J. Gen. Appl. Microbiol. 34 (1988) 425–432

    CAS  Google Scholar 

  31. Klemps, R.;Cypionka, H.;Widdel, F.;Pfennig, N.: Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch. Microbiol. 143 (1985) 203–208

    Article  CAS  Google Scholar 

  32. Dalsgaard, T.;Bak, F.: Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl. Environ. Microbiol. 60, 1 (1994) 291–297

    CAS  Google Scholar 

  33. Moletta, R.;Albagnac, G.: A gas meter for low rates of gas flow: Application to the methane production. Biotechnol. letters. 4, 5 (1982) 319–322

    Article  CAS  Google Scholar 

  34. Lawrence, A.W.;McCarty, P.L.: The effects of sulfides on anaerobic treatment. Air and Water Pollut Int J. 10 (1966) 207–221

    CAS  Google Scholar 

  35. Wilhelm, E.;Battino, R.;Wilcock, R.: Low-pressure solubility of gases in liquid water. Chem Rev. 77, 2 (1977) 219–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a research grant from the “Agence de l'Environement et de la Maitrise de l'Energie”, (ADEME) Paris, France. The authors would like to express their gratitude to A. Bories for his valuable advice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Percheron, G., Bernet, N. & Moletta, R. A new method for the determination of dissolved sulfide in strongly colored anaerobically treated effluents. Bioprocess Engineering 15, 317–322 (1996). https://doi.org/10.1007/BF02426441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02426441

Keywords

Navigation