Skip to main content
Log in

Determination of ion permeability through the channels made of porins from the outer membrane ofSalmonella typhimurium in lipid bilayer membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The three types of porin (matrix-proteins) fromSalmonella typhimurium with molecular weights of 38,000, 39,000 and 40,000 were reconstituted with lipid bilayer membranes either as a trimer or as an oligomer (complex I). The specific conductance of the membranes increased several orders of magnitude after the addition of the porins into the aqueous phase bathing the membranes. A linear relationship between protein concentration in the aqueous phase and membrane conductance was found. In the case of lower protein concentrations (10−12 m), the conductance increased in a stepwise fashion with a single conductance increment of 2.3 nS in 1m KCl. For a given salt the conductance increment was found to be largely independent of the particular porin (38 K, 39K or 40 K) and on the state of aggregation, although porin oligomers showed an up to 10 times smaller conductance increase in macroscopic conductance measurements. The conductance pathway has an ohmic current voltage characteristic and a poor selectivity for different alkali ions. Further information on the structure of the pores formed by the different porins fromSalmonella was obtained from the selectivity for various ions. From the permeability of the pore for large ions (Tris+, glucosamine+, Hepes_ a minimum pore diameter of 0.8 nm is estimated. This value is in agreement with the size of the pore as calculated from the conductance data for 1m KCl (1.4 nm for a pore length of 7.5 nm). The pore diameter may well account for the sugar permeability which has been found in reconstituted vesicles. The findings reported here are consistent with the assumption that the different porins form large aqueous channels in the lipid bilayer membranes and that the single condutance unit is a trimer. In addition, it is suggested that one trimer contains only one pore rather than a bundle of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames, G.F., Spudick, E.N., Nikaido, H. 1974. Protein composition of the outer membrane ofSalmonella typhimurium: Effect of lipopolysaccharide mutations.J. Bacteriol. 117:406

    Google Scholar 

  2. Benz, R., Boehler-Kohler, B.A., Dieterle, R., Boos, W. 1978. Porin activity in the osmotic shock fluid ofEscherichia colli.J. Bacteriol. 135:1080

    Google Scholar 

  3. Benz, R., Janko, K., Boos, W., Läuger, P., 1978. Formation of large, ion-permeable membrane channels by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 511:305

    Google Scholar 

  4. Benz, R., Janko, K., Läuger, P. 1979. Ionic selectivity of pores formed by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 551:238

    Google Scholar 

  5. Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycinmediated transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Google Scholar 

  6. Boehler-Kohler, B.A., Boos, W., Dieterle, R., Benz, R. 1979. Receptor for bacteriophage lambda ofEscherichia coli forms larger pores in black lipid membrane than the matrix protein (porin).J. Bacteriol. 138:33

    Google Scholar 

  7. Boheim, G. 1974. Statistical analysis of alamethicin channels in black lipid membranes.J. Membrane Biol. 19:277

    Google Scholar 

  8. Decad, G.M., Nikaido, H. 1976. Outer membrane of gramnegative bacteria. XII. Molecular sieving function of cell wall.J. Bacteriol. 128:325

    Google Scholar 

  9. DiRienzo, J.M., Inouye, M. 1979. Lipid fluidity-dependent biosynthesis and assembly of the outer membrane proteins ofE.coli. Cell. 17:155

    Google Scholar 

  10. DiRienzo, J.M., Nakamura, K., Inouye, M. 1978. The outer membrane of gram-negative bacteria: Biosynthesis, assembly and function.Annu. Rev. Biochem. 47:481

    Google Scholar 

  11. Henning, U., Höhn, B., Sonntag, J. 1973. Cell envelope and shape ofEscherichia coli K12. The ghost membrane.Eur. J. Biochem. 39:27

    Google Scholar 

  12. Konigs, W.N. 1977. Active transport of solutes in bacterial membrane vesicles.Adv. Microb. Physiol. 15:175

    Google Scholar 

  13. Lutkenhans, J.F. 1977. Role of a major outer membrane protein inEscherichia coli.J. Bacteriol. 131:631

    Google Scholar 

  14. Mizushima, S., Yamada, H. 1975. Isolation and characterization of two outer membrane preparations fromEscherichia coli.Biochim. Biophys. Acta 375:44

    Google Scholar 

  15. Nakae, T. 1976. Outer membrane ofSalmopella typhimurium: Reconstitution of sucrose-permeable vesicles.Biochem. Biophys. Res. Commun. 64:1224

    Google Scholar 

  16. Nakae, T. 1976. Identification of the outer membrane protein ofEscherichia coli that produces transmembrane channels in reconstituted vesicle membranes.Biochem. Biophys. Res. Commun.71:877

    Google Scholar 

  17. Nakae, T. 1979. Outer membrane of Salmonella: Isolation of protein complex that produces trasmembrane channels.J. Biol. Chem. 251:2176

    Google Scholar 

  18. Nakae, T., Ishii, J. 1978. Transmembrane permeability channels in vesicles reconstituted from single species of porins fromSalmonella typhimurium.J. Bacteriol. 133:1412

    Google Scholar 

  19. Nakae, T., Ishii, J., Tokunage, M. 1979. Subunit structure of functional porin oligomers that form permeability channels in the outer membrane ofEscherichia coli.J. Biol. Chem. 254:1457

    Google Scholar 

  20. Nakae, T., Nikaido, H. 1975. Outer membrane as a diffusion barrier inSalmonella typhimurium.J. Biol. Chem. 250:7359

    Google Scholar 

  21. Nikaido, H. 1979. Permeability of the outer membrane of bacteria.Angew. Chem. Int. Ed. Engl. 18:337

    Google Scholar 

  22. Nikaido, H., Song, S.A., Shaltiel, L., Nurmineu, M. 1977. Out membranes ofSalmonella. XIV. Reduced transmembrane diffusion rates in porin-deficient mutants.Biochem. Biophys. Res. Commun. 76:324

    Google Scholar 

  23. Nixdorf, K., Fitzer, H., Gmeiner, J., Martin, H.H. 1977. Reconstitution of model membranes from phospholipid and outer membrane proteins fromProteus mirabilis: Role of proteins in the formation of hydrophilic pores and protection of membranes against detergents.Eur. J. Biochem. 81:63

    Google Scholar 

  24. Nurminen, M., Lounatmaa, K., Sarvas, M., Mäkelä, P.H., Nakae, T. 1976. Bacteriophage-resistant mutants ofSalmonella typhimurium deficient in two major outer membrane proteins.J. Bacteriol. 127:941

    Google Scholar 

  25. Palva, E.T., Randall, L.L. 1978. Arragement of protein I inEscherichia coli outer membrane: Cross-linking studies.J. Bacteriol. 133:279

    Google Scholar 

  26. Rosenbusch, J.P. 1974. Characterization of the major envelope protein fromEscherichia coli.J. Biol. Chem. 249:8019

    Google Scholar 

  27. Sanders, H. 1967. Preparative isolation of phosphatidyl serine from brain.Biochim. Biophys. Acta 144:485

    Google Scholar 

  28. Schindler, H., Rosenbusch, J.P. 1978. Matrix protein fromEscherichia coli outer membranes forms voltage-controlled channels in lipid bilayer membranes.Proc. Nat. Acad. Sci. USA 75:3751

    Google Scholar 

  29. Schmitges, C.J., Henning, U. 1976. The major proteins of theEscherichia coli outer cell-envelope membrane: Heterogeneity of protein I.Eur. J. Biochem. 63:47

    Google Scholar 

  30. Schnaitman, C.A. 1974. Outer membrane protein fromE. coli. III. Evidence that the major protein ofEscherichia coli 0111 outer membrane consists of four distinct polypeptides species.J. Bacteriol. 183:442

    Google Scholar 

  31. Singleton, W.S., Gray, M.S., Brown, M.L., White, J.L. 1965. Chromatographically homogenous lecithin from egg phospholipids.J. Am. Oilchem. Soc. 42:53

    Google Scholar 

  32. Steven, A.C., Heggler, B. ten, Müller, R., Kistler, J., Rosenbuch, J.P. 1977. Ultrastructure of a periodic protein layer in the outer membrane ofEscherichia coli.J. Cell Biol. 72:292

    Google Scholar 

  33. Stock, J.B., Rauch, B., Roseman, S. 1977. Periplasmic space inSalmonella typhimurium andEscherichia coli.J. Biol. Chem. 252:7850

    Google Scholar 

  34. Tokunaga, H., Tokunaga, M., Nakae, T. 1979. Characterization of porins from the outer membrane ofSalmonella typhimurium.Eur. J. Biochem. 95:433

    Google Scholar 

  35. Tokunaga, M., Tokunaga, H., Okajima, Y., Nakae, T. 1979. Characterization of porins from outer membrane ofSalmonella typhimurium. 2. Physical properties of the functional oligomers aggregates.Eur. J. Biochem. 95:441

    Google Scholar 

  36. Ueki, T., Mitsui, T., Nikaido, H. 1979. X-ray diffraction studies of outer membranes ofSalmonella typhimurium.J. Biochem. 85:173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, R., Ishii, J. & Nakae, T. Determination of ion permeability through the channels made of porins from the outer membrane ofSalmonella typhimurium in lipid bilayer membranes. J. Membrain Biol. 56, 19–29 (1980). https://doi.org/10.1007/BF01869348

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869348

Keywords

Navigation