Skip to main content

The Role of Zinc in Candida Dimorphism

  • Chapter
Current Topics in Medical Mycology

Part of the book series: Current Topics in Medical Mycology ((CT MYCOLOGY,volume 1))

Abstract

The yeast Candida albicans remains a persistent pathogen in humans (42). For reasons that still remain obscure, this commensal is able to sense changes in the physiology of the host, especially debilitating ones, and to attack opportunistically tissues ranging in diversity from vaginal epithelium to heart valve (2, 3, 4, 42, 45). Candida species are capable of growing in at least two distinct forms: the “yeast” or budding form and the elongate mycelial form (42). Both are found in infected tissue and both may play a role in the invasion process. Several mycelium-minus mutants have been found to be relatively nonvirulent (Buckley, personal communication), supporting the suggestion that the mycelium invades tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams J: The interrelationship of cell growth and division in haploid and diploid cells of Saccharomyces cerevisiae. Exp Cell Res 106: 265–275, 1977.

    Article  Google Scholar 

  2. Ahearn DG: Medically important yeasts. Ann Rev Microbiol 32: 59–68, 1978.

    Article  CAS  Google Scholar 

  3. Al-Doory Y, Paasch LH, Zook BC, Khorer RG: Pathological studies in experimental Candida endocarditis. Jpn Heart J. 20: 427–440, 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Aronson IK, Soltani K: Chronic mucocutaneous candidosis: A review. Mycopathologia 60: 17–25, 1976.

    Article  PubMed  CAS  Google Scholar 

  5. Barlow AJE, Alldersley T: Factors present in serum and seminal plasma which promote germ-tube formation and mycelial growth of Candida albi-cans. J Gen Microbiol 82: 261–272, 1974.

    PubMed  CAS  Google Scholar 

  6. Bartnicki-Garcia S, Nickerson WJ: Nutrition, growth, and morphogenesis of Mucor rouxii. J Bacteriol 84: 841–858, 1962.

    PubMed  CAS  Google Scholar 

  7. Bedell GW, Soll DR: Effects of zinc on the growth and dimorphism of Candida albicans: Evidence for zinc-resistant and -sensitive pathways for mycelium formation. Infect Immun 26: 348–354, 1979.

    PubMed  CAS  Google Scholar 

  8. Bedell G, Werth A, Soll DR: The regulation of nuclear migration and division during synchronous bud formation in released stationary phase cultures of the yeast Candida albicans. Exp Cell Res 127: 103–113, 1980.

    Article  CAS  Google Scholar 

  9. Braun PC, Calderone RA: Chitin synthesis in Candida albicans: Comparison of yeast and hyphal forms. J Bacteriol 135: 1472–1477, 1978.

    Google Scholar 

  10. Brown LA, Chaffin WL: Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans. Can J Microbiol 27: 580–585, 1981.

    Article  CAS  Google Scholar 

  11. Brummel M, Soll DR: The temporal regulation of protein synthesis during synchronous bud or mycelium formation in the dimorphic yeast Candida albicans. Develop Biol 89: 211–224, 1982.

    Article  CAS  Google Scholar 

  12. Buffo J, Herman MA, Soll DR: A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 85: 21–30, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Byers B, Goetsch L: A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol 69: 717–721, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Carter BLA, Jagadesh MN: The relationship between cell size and cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 112: 15–24, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Chaffin WL, Sogin SL: Germ tube formation from zonal rotor fractions of Candida albicans. J Bacteriol 126: 771–776, 1976.

    PubMed  CAS  Google Scholar 

  16. Chattaway FW, Holmes MR, Barlow AJE: Cell wall composition of the mycelia! and blastospore forms of Candida albicans. J Gen Microbiol 51: 367–376, 1968.

    PubMed  CAS  Google Scholar 

  17. Chattaway FW, O’Reilly J: Induction of the mycelial form of Candida albi-cans by hydrolysates of peptides and seminal plasma. J Gen Microbiol 96: 317–322, 1976.

    PubMed  CAS  Google Scholar 

  18. Chesters JK: Biochemical functions of zinc in animals, in Boume GH (ed): World Review of Nutrition and Dietetics. Basel, S. Karger, 1978, vol 32, pp 135–164.

    Google Scholar 

  19. Dabrowa N, Taper SS, Howard DH: Germination of Candida albicans induced by proline. Infect Immun 13: 830–835, 1976.

    PubMed  CAS  Google Scholar 

  20. DeFever K, Whelan WL, Beneke ES, Rogers AL, Vaselenak J, Soll DR: Resistance to 5-fluorocytosine in Candida albicans: The frequency of partially resistant strains among clinical isolates. Antimicrob Agents Che-mother 22: 810–815, 1982.

    CAS  Google Scholar 

  21. Failla ML, Weinberg ED: Zinc transport and metabolism in microorganisms, in Nilagu JO (ed): Zinc in the Environment, Part II: Health Effects. New York, John Wiley & Sons, 1980, pp 439–464.

    Google Scholar 

  22. Gould SJ: Ontogeny and Phylogeny. Cambridge, The Belknap Press of Harvard University Press, 1977, pp 209–266.

    Google Scholar 

  23. Gow NR, Goodway GW: Growth kinetics and morphology of colonies of the filamentous forms of Candida albicans. J Gen Microbiol 128: 2187–2194, 1982.

    PubMed  CAS  Google Scholar 

  24. Gow NR, Gooday GW, Newsam RM, Gull K: Ultrastructure of the septum in Candida albicans. Curr Microbiol 4: 357–359, 1980.

    Article  Google Scholar 

  25. Johnston GC: Size and budding during starvation of the yeast Saccharomyces cerevisiae. J Bacteriol 132: 738–739, 1977.

    PubMed  CAS  Google Scholar 

  26. Johnston GC, Pringle JR, Hartwell LH: Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105: 79–98, 1977.

    Article  PubMed  CAS  Google Scholar 

  27. Johnston GC, Singer RA: RNA synthesis and control of cell division in the yeast S. cerevisiae. Cell 14: 951–958, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Land GA, McDonald WC, Stjernholm RL, Friedman L: Factors affecting filamentation in Candida albicans: Changes in respiratory activity of Candida albicans during filamentation. Infect Immun 12: 119–127, 1975.

    PubMed  CAS  Google Scholar 

  29. Lee KL, Buckley HR, Campbell CC: An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans. Sabouraudia 13: 148–153, 1975.

    Article  PubMed  CAS  Google Scholar 

  30. Lombeck I, Von Bassewitz DB, Becker K, Tinschmann P, Kästner H: Ultra-structural findings in acrodermatitis enteropathica. Pediatr Res 8: 82–88, 1974.

    Article  PubMed  CAS  Google Scholar 

  31. Magee PT, Kakar SN, Kwon-Chung KJ: Genetic analysis of Candida albi-cans by complementation, in Schlessinger D (ed): Microbiology 1983. Washington DC, American Society for Microbiology, 1983, pp 230–233.

    Google Scholar 

  32. Manning M, Mitchell TG: Analysis of cytoplasmic antigens of the yeast and mycelial phases of Candida albicans by two-dimensional electrophoresis. Infect Immun 30: 484–495, 1980.

    PubMed  CAS  Google Scholar 

  33. Manning M, Mitchell TG: Morphogenesis of Candida albicans and cytoplasmic proteins associated with differences in morphology, strain, or temperature. J Bacteriol 144: 258–273, 1980.

    PubMed  CAS  Google Scholar 

  34. Mardon DW, Balish E, Phillips AW: Control of dimorphism in a biochemical variant of Candida albicans. J Bacteriol 100: 701–707, 1969.

    PubMed  CAS  Google Scholar 

  35. Mattia E, Cassone E: Inducibility of germ tube formation in Candida albi-cans at different phases of yeast growth. J Gen Microbiol 113: 439–442, 1979.

    PubMed  CAS  Google Scholar 

  36. Miller SW, Spurlock BO, Michaels GE: Electron microscopy of young Candida albicans chlamydospores. J Bacteriol 119: 992–999, 1974.

    PubMed  CAS  Google Scholar 

  37. Mitchell L, Soll DR: Commitment to germ tube or bud formation during release from stationary phase in Candida albicans. Exp Cell Res 120: 167–179, 1979.

    Article  PubMed  CAS  Google Scholar 

  38. Mitchell L, Soll DR: Septation during synchronous mycelium and bud formation in released stationary phase cultures of Candida albicans. Exp Mycol 3: 298–309, 1979.

    Article  Google Scholar 

  39. Moynahan EJ: Acrodermatitis enteropathica: A lethal inherited human zinc-deficiency disorder. Lancet 1I: 399–400, 1974.

    Article  Google Scholar 

  40. Nickerson WJ, Van Rij NJ: The effect of sulphydryl compounds, penicillin, and cobalt on the cell division mechanism of yeast. Biochim. Biophys Acta 3: 461–475, 1949.

    Article  CAS  Google Scholar 

  41. Niimi M, Niimi K, Tokunagu J, Nakayama H: Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans. J Bacteriol 142: 1010–1014, 1980.

    PubMed  CAS  Google Scholar 

  42. Odds FC: Candida and Candidosis. Baltimore, University Park Press, 1979.

    Google Scholar 

  43. Olaiya AF, Sogin SJ: Ploidy determination of Candida albicans. J Bacteriol 140: 1043–1049, 1979.

    PubMed  CAS  Google Scholar 

  44. Olaiya AF, Steed JF, Sogin SJ: Deoxyribonucleic acid-deficient strains of Candida albicans. J Bacteriol 141: 1284–1290, 1980.

    PubMed  CAS  Google Scholar 

  45. Oriel JD, Partridge BM, Denny MJ, Coleman JC: Genital yeast infections. Br Med J 4: 761–764, 1972.

    Article  PubMed  CAS  Google Scholar 

  46. Persi MA, Burnham JC: Use of tannic acid as a fixative mordant to improve the ultrastructural appearance of Candida albicans blastospores. Sabouraudia 19: 1–8, 1981.

    Article  PubMed  CAS  Google Scholar 

  47. Pine L, Peacock CL: Studies on the growth of Histoplasma capsulatum. IV. Factors influencing conversion of the mycelial phase to the yeast phase. J Bacteriol 75: 167–174, 1958.

    PubMed  CAS  Google Scholar 

  48. Portnoy B, Molokhia M: Zinc in acrodermatitis enteropathica. Lancet 11: 663–664, 1974.

    Article  Google Scholar 

  49. Poulter R, Hanrahan Y, Jeffery K, Markie D, Shepherd MG, Sullivan P: Recombination analysis of naturally diploid Candida albicans. J Bacteriol 152: 969–975, 1982.

    PubMed  CAS  Google Scholar 

  50. Riggsby WS, Torres-Bauza LJ, Wills JW, Townes TM: DNA content, kinetic complexity, and the ploidy question in Candida albicans. Molec Cell Biol 2: 853–862, 1982.

    PubMed  CAS  Google Scholar 

  51. Shannon JL: Scanning and transmission electron microscopy of Candida albicans chlamydospores. J Gen Microbiol 125: 199–203, 1981.

    PubMed  CAS  Google Scholar 

  52. Shannon JL, Rothman AH: Transverse septum formation in budding cells of the yeast-like fungus Candida albicans. J Bacteriol 106: 1026–1028, 1971.

    PubMed  CAS  Google Scholar 

  53. Simonetti N, Strippoli V, Cassone A: Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature 250: 344–346, 1974.

    Article  PubMed  CAS  Google Scholar 

  54. Singer RA, Johnston GC: Transcription of rRNA genes and cell cycle regulation in the yeast Saccharomyces cerevisiae, in Padilla GM, McCarty KS (eds): Genetic Expression in the Cell Cycle. New York, Academic Press, 1982, pp 181–197.

    Google Scholar 

  55. Soll DR: Timers in developing systems. Science 203: 841–849, 1979.

    Article  PubMed  CAS  Google Scholar 

  56. Soll DR: A new method for examining the complexity and relationships of “timers” in developing systems. Develop Biol 95: 73–91, 1983.

    Article  PubMed  CAS  Google Scholar 

  57. Soll DR: The cell cycle and commitment to alternate cell fates in Candida albicans,in Nurse P, Streiblova E (eds): The Microbial Cell Cycle. Boca Raton, Florida, CRC Press, 1984, chap 10.

    Google Scholar 

  58. Soll DR, Bedell G: Bud formation and the inducibility of pseudomycelium outgrowth during release from stationary phase in Candida albicans. J Gen Microbiol 108: 173–180, 1978.

    Google Scholar 

  59. Soll DR, Bedell GW, Brummel M: Zinc and the regulation of growth and phenotype in the infectious yeast Candida albicans. Infect Immun 32: 1139–1147, 1981.

    PubMed  CAS  Google Scholar 

  60. Soll DR, Bedell G, Thiel J, Brummel M: The dependency of nuclear division of volume in the dimorphic yeast Candida albicans. Exp Cell Res 133: 55–62, 1981.

    Article  PubMed  CAS  Google Scholar 

  61. Soll DR, Herman MA: Growth and the inducibility of mycelium formation in Candida albicans: A single cell analysis using a perfusion chamber. J Gen Microbiol 129: 2809–2824, 1983.

    PubMed  CAS  Google Scholar 

  62. Soll DR, Mitchell L: Filament ring formation in the dimorphic yeast Candida albicans. J Cell Biol 96: 486–493, 1983.

    Article  PubMed  CAS  Google Scholar 

  63. Soll DR, Stasi M, Bedell G: The regulation of nuclear migration and division during pseudo-mycelium outgrowth in the dimorphic yeast Candida albi-cans. Exp Cell Res 116: 207–215, 1978.

    Article  PubMed  CAS  Google Scholar 

  64. Sullivan PA, Shepherd MG: Gratuitous induction of germ-tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans. J Bacteriol 151: 1118–1122, 1982.

    PubMed  CAS  Google Scholar 

  65. Syverson RE, Buckley HR, Campbell CC: Cytoplasmic antigens unique to the mycelial or yeast phase of Candida albicans. Infect Immun 12: 1183–1188, 1975.

    Google Scholar 

  66. Taschdjian LL, Burchall JJ, Kozinn PJ: Rapid identification of Candida albi-cans by filamentation on serum and serum substitutes. Am J Dis Child 99: 212–215, 1960.

    CAS  Google Scholar 

  67. Tyson CB, Lord PG, Wheals AE: Dependency of size of Saccharomyces cerevisiae cells on growth rate. J Bacteriol 138: 92–98, 1979.

    PubMed  CAS  Google Scholar 

  68. Wain WH, Price MF, Brayton AR, Cawson RA: Macromolecular synthesis during the cell cycle of yeast and hyphal phases of Candida albicans. J Gen Microbiol 97: 211–217, 1976.

    PubMed  CAS  Google Scholar 

  69. Whelan W: Genetic studies in Candida albicans by means of mitotic segregation, in Schlessinger D (ed): Microbiology 1983. Washington DC, American Society for Microbiology, 1983, pp 227–229.

    Google Scholar 

  70. Whelan WL, Beneke ES, Rogers AL, Soll DR: Segregation of 5-fluorocytosine-resistant variants by Candida albicans. Antimicrob Agents Chemother 19: 1078–1081, 1981.

    PubMed  CAS  Google Scholar 

  71. Whelan WL, Magee PT: Natural heterozygosity in Candida albicans. J Bacteriol 145: 896–903, 1981.

    PubMed  CAS  Google Scholar 

  72. Whelan WL, Partridge RM, Magee PT: Heterozygosity and segregation in Candida albicans. Molec Gen Genet 180: 107–113, 1980.

    Article  PubMed  CAS  Google Scholar 

  73. Whelan WL, Soll DR: Mitotic recombination in Candida albicans: Recessive lethal alleles linked to a gene required for methionine biosynthesis. Molec Gen Genet 187: 477–485, 1982.

    Article  PubMed  CAS  Google Scholar 

  74. Widra A: Phosphate directed Y-M variation in Candida albicans. Mycopathol Mycol Appl 23: 197–202, 1964.

    Article  PubMed  CAS  Google Scholar 

  75. Yamaguchi H: Control of dimorphism in Candida albicans by zinc: Effect on cell morphology and composition. J Gen Microbiol 86:370–372, 1975.

    PubMed  CAS  Google Scholar 

  76. Yamaguchi H, Kanda Y, Oswoni M: Dimorphism in Candida albicans. II. Comparison of fine structure of yeast-like and filamentous phase growth. J Gen Appl Microbiol 20: 101–110, 1974.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Soll, D.R. (1985). The Role of Zinc in Candida Dimorphism. In: McGinnis, M.R. (eds) Current Topics in Medical Mycology. Current Topics in Medical Mycology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9547-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9547-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9549-2

  • Online ISBN: 978-1-4613-9547-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics