Skip to main content

Microbatteries for Advanced Applications

  • Living reference work entry
  • First Online:
Handbook of Energy Materials
  • 82 Accesses

Abstract

With the increasing demand for portable, wearable, and implantable electronics, miniaturized energy storage devices (MESDs), including microbatteries (MBs) and micro-supercapacitors (MSCs) are greatly stimulated in recent years. With respect to the two indispensable aspects of MESDs, electrochemically active materials synthesis and microelectrode design are of great importance. Herein, the recent advancements, electrochemical mechanisms, and the applications of MBs based on unique and high-performance materials, especially two-dimensional (2D) transition-metal dichalcogenides (TMDs), are comprehensively reviewed; also, the emerging microfabrication strategies related to the MESDs are compared. Furthermore, future research trends, opportunities, and challenges related to the 2D TMDs-based MESDs, especially the MBs, are provided for the promising development and application of next-generation MESDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015)

    Article  CAS  Google Scholar 

  • M. Balkanski, Solid-state microbatteries for electronics in the 21st century. Sol. Energy Mater. Sol. Cells 62, 21–35 (2000)

    Article  CAS  Google Scholar 

  • M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014)

    Article  CAS  Google Scholar 

  • F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015)

    Article  CAS  Google Scholar 

  • B.D. Boruah, Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Mater. 21, 219–239 (2019)

    Article  Google Scholar 

  • F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, W. Huang, Recent developments of advanced micro-supercapacitors: Design, fabrication and applications. npj Flex. Electron. 4, 31 (2020)

    Article  Google Scholar 

  • L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai, P.M. Ajayan, Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9, 2905–2910 (2013)

    Article  CAS  Google Scholar 

  • T. Chu, S. Park, K. Fu, 3D printing-enabled advanced electrode architecture design. Carbon Energy 3, 424–439 (2021)

    Article  Google Scholar 

  • X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, H. Liu, S. Dou, Atomically thin transition-metal dichalcogenides for electrocatalysis and energy storage. Small Methods 1, 1700156 (2017)

    Article  CAS  Google Scholar 

  • N.J. Dudney, Thin film micro-batteries. Electrochem. Soc. Interface 17, 44–48 (2008)

    Article  CAS  Google Scholar 

  • V. Egorov, U. Gulzar, Y. Zhang, S. Breen, C. O’Dwyer, Evolution of 3D printing methods and materials for electrochemical energy storage. Adv. Mater. 32, 2000556 (2020)

    Article  CAS  Google Scholar 

  • J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011)

    Article  CAS  Google Scholar 

  • S. Ferrari, M. Loveridge, S.D. Beattie, M. Jahn, R.J. Dashwood, R. Bhagat, Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources 286, 25–46 (2015)

    Article  CAS  Google Scholar 

  • K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016)

    Article  CAS  Google Scholar 

  • D. Golodnitsky, M. Nathan, V. Yufit, E. Strauss, K. Freedman, L. Burstein, A. Gladkich, E. Peled, Progress in three-dimensional (3D) Li-ion microbatteries. Solid State Ionics 177, 2811–2819 (2006)

    Article  CAS  Google Scholar 

  • J.H. Han, M. Kwak, Y. Kim, J. Cheon, Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures. Chem. Rev. 118, 6151–6188 (2018)

    Article  CAS  Google Scholar 

  • G. Hang, A. Lal, Nanopower betavoltaic microbatteries, in: TRANSDUCERS ‘03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), 2003, pp. 36–39 vol.31

    Google Scholar 

  • J. He, C. Zhang, H. Du, S. Zhang, P. Hu, Z. Zhang, Y. Ma, C. Huang, G. Cui, Engineering vertical aligned MoS2 on graphene sheet towards thin film lithium ion battery. Electrochim. Acta 178, 476–483 (2015)

    Article  CAS  Google Scholar 

  • C.C. Ho, J.W. Evans, P.K. Wright, Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. J. Micromech. Microeng. 20, 104009 (2010)

    Article  CAS  Google Scholar 

  • B. Hu, X. Wang, Advances in micro lithium-ion batteries for on-chip and wearable applications. J. Micromech. Microeng. 31, 114002 (2021)

    Article  CAS  Google Scholar 

  • J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. J. Energy Chem. 33, 100–124 (2019)

    Article  Google Scholar 

  • C. Julien, A. Gorenstein, Materials design and optimization for thin-film microbatteries. Ionics 1, 193–210 (1995)

    Article  CAS  Google Scholar 

  • C. Julien, G.-A. Nazri, Design and optimization of solid-state microbatteries, in Solid State Batteries: Materials Design and Optimization, (Springer US, Boston, MA, 1994), pp. 1–96

    Chapter  Google Scholar 

  • C. Julien, G.-A. Nazri, Solid State Batteries: Materials Design and Optimization (Springer Science & Business Media, 2013)

    Google Scholar 

  • C. Julien, I. Samaras, M. Tsakiri, P. Dzwonkowski, M. Balkanski, Lithium insertion in In-Se films and applications in microbatteries. Mater. Sci. Eng. B 3, 25–29 (1989)

    Article  Google Scholar 

  • N.A. Kyeremateng, Self-organised TiO2 nanotubes for 2D or 3D Li-ion microbatteries. ChemElectroChem 1, 1442–1466 (2014)

    Article  CAS  Google Scholar 

  • S.D. Lacey, J. Wan, A. von Wald Cresce, S.M. Russell, J. Dai, W. Bao, K. Xu, L. Hu, Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 15, 1018–1024 (2015)

    Article  CAS  Google Scholar 

  • W. Lai, C.K. Erdonmez, T.F. Marinis, C.K. Bjune, N.J. Dudney, F. Xu, R. Wartena, Y.-M. Chiang, Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design. Adv. Mater. 22, E139–E144 (2010)

    Article  CAS  Google Scholar 

  • X. Li, M. Sun, S. Cheng, X. Ren, J. Zang, T. Xu, X. Wei, S. Li, Q. Chen, C. Shan, Crystallographic-Orientation Dependent Li Ion Migration and Reactions in Layered MoSe2. 2D Mater. 6, 035027 (2019)

    Article  CAS  Google Scholar 

  • J. Liao, W. Ni, C. Wang, J. Ma, Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem. Eng. J. 391, 123489 (2020)

    Article  CAS  Google Scholar 

  • P. Liu, Y. Chang, J. Zhang, Single-walled carbon nanotube film-silicon heterojunction radioisotope betavoltaic microbatteries. J. Micromech. Microeng. 24, 055026 (2014)

    Article  CAS  Google Scholar 

  • L. Liu, Q. Weng, X. Lu, X. Sun, L. Zhang, O.G. Schmidt, Advances on microsized on-chip lithium-ion batteries. Small 13, 1701847 (2017)

    Article  CAS  Google Scholar 

  • J. Ma, S. Zheng, P. Das, P. Lu, Y. Yu, Z.-S. Wu, Sodium ion microscale electrochemical energy storage device: Present status and future perspective. Small Struct. 1, 2000053 (2020)

    Article  Google Scholar 

  • K. McKelvey, A.A. Talin, B. Dunn, H.S. White, Microscale 2.5D batteries. J. Electrochem. Soc. 164, A2500–A2503 (2017)

    Article  CAS  Google Scholar 

  • K. McKelvey, M. Brunet Cabré, A. Esmeraldo Paiva, Continuum simulations for microscale 3D batteries. Curr. Opin. Electrochem. 21, 76–83 (2020)

    Article  CAS  Google Scholar 

  • M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, B. Dubertret, Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934–10982 (2016)

    Article  CAS  Google Scholar 

  • W. Ni, L. Shi, Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. J. Vac. Sci. Technol. A 37, 040803 (2019)

    Article  CAS  Google Scholar 

  • W. Ni, L. Shi, 2D and layered Ti-based materials for supercapacitors and rechargeable batteries: Synthesis, properties, and applications. Curr. Appl. Mater. 1, e200521193451 (2022)

    Article  Google Scholar 

  • H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu, J. Wang, J.A. Rogers, W.P. King, P.V. Braun, Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. 112, 6573–6578 (2015)

    Article  CAS  Google Scholar 

  • J.F.M. Oudenhoven, L. Baggetto, P.H.L. Notten, All-solid-state lithium-ion microbatteries: A review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011)

    Article  CAS  Google Scholar 

  • J. Pan, C. Guo, C. Song, X. Lai, H. Li, W. Zhao, H. Zhang, G. Mu, K. Bu, T. Lin, X. Xie, M. Chen, F. Huang, Enhanced superconductivity in restacked TaS2 nanosheets. J. Am. Chem. Soc. 139, 4623–4626 (2017)

    Article  CAS  Google Scholar 

  • X. Pan, X. Hong, L. Xu, Y. Li, M. Yan, L. Mai, On-chip micro/nano devices for energy conversion and storage. Nano Today 28, 100764 (2019)

    Article  Google Scholar 

  • S. Peng, W. Du, L. Rakesh, A. Mellinger, T. Kaya, Thin-film micro-batteries based on metal nanoparticles. MRS Online Proc. Library 1440, 19–24 (2012)

    Article  CAS  Google Scholar 

  • J. Peng, J. Wu, X. Li, Y. Zhou, Z. Yu, Y. Guo, J. Wu, Y. Lin, Z. Li, X. Wu, C. Wu, Y. Xie, Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139, 9019–9025 (2017)

    Article  CAS  Google Scholar 

  • J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013)

    Article  CAS  Google Scholar 

  • J.H. Pikul, J. Liu, P.V. Braun, W.P. King, Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. J. Power Sources 315, 308–315 (2016)

    Article  CAS  Google Scholar 

  • J.H. Pikul, P.V. Braun, W.P. King, Performance modeling and design of ultra-high power microbatteries. J. Electrochem. Soc. 164, E3122–E3131 (2017)

    Article  CAS  Google Scholar 

  • P. Priimägi, D. Brandell, S. Srivastav, A. Aabloo, H. Kasemägi, V. Zadin, Optimizing the design of 3D-pillar microbatteries using finite element modelling. Electrochim. Acta 209, 138–148 (2016)

    Article  CAS  Google Scholar 

  • R. Sheil, J.P. Chang, Synthesis and integration of thin film solid state electrolytes for 3D Li-ion microbatteries. J. Vac. Sci. Technol. A 38, 032411 (2020)

    Article  CAS  Google Scholar 

  • K. Sun, T.-S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013)

    Article  CAS  Google Scholar 

  • X. Tian, J. Jin, S. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-printed electrochemical energy storage devices: A critical review. Adv. Energy Mater. 7, 1700127 (2017)

    Article  CAS  Google Scholar 

  • A. Toor, A. Wen, F. Maksimovic, A.M. Gaikwad, K.S.J. Pister, A.C. Arias, Stencil-printed Lithium-ion micro batteries for IoT applications. Nano Energy 82, 105666 (2021)

    Article  CAS  Google Scholar 

  • J. Wan, W. Bao, Y. Liu, J. Dai, F. Shen, L. Zhou, X. Cai, D. Urban, Y. Li, K. Jungjohann, M.S. Fuhrer, L. Hu, In situ investigations of Li-MoS2 with planar batteries. Adv. Energy Mater. 5, 1401742 (2015a)

    Article  CAS  Google Scholar 

  • C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder, R. Yang, K. Koumoto, Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015b)

    Article  CAS  Google Scholar 

  • Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)

    Article  CAS  Google Scholar 

  • X. Wang, Z.-S. Wu, Zinc based micro-electrochemical energy storage devices: Present status and future perspective. EcoMat 2, e12042 (2020)

    CAS  Google Scholar 

  • Z. Wang, A. Chen, R. Winslow, D. Madan, R.C. Juang, M. Nill, J.W. Evans, P.K. Wright, Integration of dispenser-printed ultra-low-voltage thermoelectric and energy storage devices. J. Micromech. Microeng. 22, 094001 (2012)

    Article  CAS  Google Scholar 

  • Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z.D. Deng, J. Xiao, Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources 286, 330–345 (2015)

    Article  CAS  Google Scholar 

  • X. Wang, Q. Weng, Y. Yang, Y. Bando, D. Golberg, Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem. Soc. Rev. 45, 4042–4073 (2016)

    Article  CAS  Google Scholar 

  • J. Wang, F. Li, F. Zhu, O.G. Schmidt, Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3, 1800367 (2019)

    Google Scholar 

  • Z. Wei, L. Wang, M. Zhuo, W. Ni, H. Wang, J. Ma, Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A 6, 12185–12214 (2018a)

    Article  CAS  Google Scholar 

  • T.-S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018b)

    Article  CAS  Google Scholar 

  • J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo, Z. Li, Y. Lin, K. Ruan, C. Wu, Y. Xie, Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140, 493–498 (2018)

    Article  CAS  Google Scholar 

  • M. Wu, W. Ni, J. Hu, J. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11, 44 (2019)

    Article  CAS  Google Scholar 

  • M. Wu, B. Xu, Y. Zhang, S. Qi, W. Ni, J. Hu, J. Ma, Perspectives in emerging bismuth electrochemistry. Chem. Eng. J. 381, 122558 (2020)

    Article  CAS  Google Scholar 

  • Y. Yu, S. Wang, D. Ma, P. Joshi, A. Hu, Recent progress on laser manufacturing of microsize energy devices on flexible substrates. JOM 70, 1816–1822 (2018a)

    Article  Google Scholar 

  • J. Yu, X. Hu, H. Li, X. Zhou, T. Zhai, Large-scale synthesis of 2D metal dichalcogenides. J. Mater. Chem. C 6, 4627–4640 (2018b)

    Article  CAS  Google Scholar 

  • C. Yue, J. Li, L. Lin, Fabrication of Si-based three-dimensional microbatteries: A review, Frontiers of. Mech. Eng. 12, 459–476 (2017)

    Google Scholar 

  • X. Yue, A.C. Johnson, S. Kim, R.R. Kohlmeyer, A. Patra, J. Grzyb, A. Padmanabha, M. Wang, Z. Jiang, P. Sun, C.T. Kiggins, M.N. Ates, S.V. Singh, E.M. Beale, M. Daroux, A.J. Blake, J.B. Cook, P.V. Braun, J.H. Pikul, A nearly packaging-free design paradigm for light, powerful, and energy-dense primary microbatteries. Adv. Mater. 33, 2101760 (2021)

    Article  CAS  Google Scholar 

  • P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018)

    Article  CAS  Google Scholar 

  • W. Zhang, H. Liu, X. Zhang, X. Li, G. Zhang, P. Cao, 3D printed micro-electrochemical energy storage devices: From design to integration. Adv. Funct. Mater. 31, 2104909 (2021)

    Article  CAS  Google Scholar 

  • S. Zhang, Y. Liu, J. Hao, G.G. Wallace, S. Beirne, J. Chen, 3D-printed wearable electrochemical energy devices. Adv. Funct. Mater. 32, 2103092 (2022)

    Article  CAS  Google Scholar 

  • S. Zheng, Z.-S. Wu, F. Zhou, X. Wang, J. Ma, C. Liu, Y.-B. He, X. Bao, All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 51, 613–620 (2018)

    Article  CAS  Google Scholar 

  • S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv. Mater. 31, 1900583 (2019)

    Article  CAS  Google Scholar 

  • S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou, J. Qin, C. Sun, Y. Yu, Z.-S. Wu, X. Bao, Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 13, 821–829 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ni or Ling-Ying Shi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ni, W., Shi, LY. (2022). Microbatteries for Advanced Applications. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics