Skip to main content

Cements and cementation

  • Reference work entry
  • First Online:
Encyclopedia of Sediments and Sedimentary Rocks

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Introduction

Cementation is the process of precipitation of mineral matter (cements) in pores within sediments or rocks. It is one of several processes, including mechanical and chemical compaction and mineral replacement, that constitute diagenesis and, taken collectively, produce progressive porosity reduction and lithification of sedimentary strata with increasing age and/or depth of burial. Cementation occurs in open intergranular or intragranular pores (i.e., between or within grains), and also takes place in larger openings such as vugs, caves or fractures. Cements even form crusts on surfaces at sediment-water or sediment-air interfaces. Precipitation of cements can occur at any stage from deposition, through burial, to uplift and re-exposure.

Cements occur in all types of siliciclastic, carbonate and evaporite strata and include an enormous variety of minerals. The most common cements are carbonates (especially calcite, aragonite, dolomite, and siderite), silicates (primarily...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bjørkum, P.A., Oelkers, E.H., Nadeau, P.H., Walderhaug, O., and Murphy, W.M., 1998. Porosity prediction in quartzose sandstones as a function of time, temperature, depth, stylolite frequency, and hydrocarbon saturation. AAPG Bulletin, 82(4): 637–648.

    Google Scholar 

  • Bjørlykke, K., 1988. Sandstone diagenesis in relation to preservation, destruction and creation of porosity. In Chilingarian, G.V., and Wolf, K.H. (eds.), Diagenesis. New York: Elsevier, pp. 555–588.

    Google Scholar 

  • Blatt, H., 1979. Diagenetic processes in sandstones. In Scholle, P.A., and Schluger, P.R. (eds.), Aspects of Diagenesis. Tulsa, OK: SEPM Special Publication, 26, pp. 141–157.

    Google Scholar 

  • Blatt, H., Middleton, G.V., and Murray, R.C., 1972. Origin of Sedimentary Rocks. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10: 516–519.

    Google Scholar 

  • Burton, E.A., and Walter, L.M., 1990. The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater. Geochimica et Cosmochimica Acta, 54: 797–808.

    Google Scholar 

  • Choquette, P.W., and James, N.P., 1987. Diagenesis #12. Diagenesis in limestones–3. The deep burial environment. Geoscience Canada, 14: 3–35.

    Google Scholar 

  • Correns, C.W., 1950. Zur Geochimie der Diagenese. I. Das Verhalten von CaCO3 und SiO2. Geochimica et Cosmochimica Acta, 1: 49–54.

    Google Scholar 

  • Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36: 491–505.

    Google Scholar 

  • Folk, R.L., 1965. Some aspects of recrystallization in ancient limestones. In Pray, L.C., and Murray, R.S. (eds.), Dolomitization and Limestone Diagenesis. Tulsa, OK: Society of Economic Paleontologists and Mineralogists, Special Publication, 13, pp. 14–48.

    Google Scholar 

  • Folk, R.L., 1974. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. Journal of Sedimentary Petrology, 44: 40–53.

    Google Scholar 

  • Füchtbauer, H., 1978. Zur Herkunft des Quarzzements: Abschätzung der Quarzauflösung in Silt-und Sandsteinen. Geologische Rundschau, 67(3): 991–1008.

    Google Scholar 

  • Goldstein, R.H., and Reynolds, T.J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. Tulsa, OK: SEPM Short Course 31.

    Google Scholar 

  • Grotzinger, J.P., and Knoll, A.H., 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios, 10: 578–596.

    Google Scholar 

  • Holser, W.T., 1979. Mineralogy of evaporites. In Burns, R.G. (ed.), Marine Minerals Washington, DC: Mineralogical Society of America Short Course Notes, 6, pp. 211–235.

    Google Scholar 

  • Humphrey, J.D., 2000. New geochemical support for mixing-zone dolomitization at Golden Grove, Barbados. Journal of Sedimentary Research, 70(5): 1160–1170.

    Google Scholar 

  • James, N.P., and Choquette, P.W., 1983. Diagenesis 6. Limestones—the sea floor diagenetic environment. Geoscience Canada 10: 162–179.

    Google Scholar 

  • James, N.P., and Choquette, P.W., 1984. Diagenesis 9. Limestones–the meteoric diagenetic environment. Geoscience Canada, 11: 161–194.

    Google Scholar 

  • James, N.P., and Ginsburg, R.N., 1979. The Seaward Margin of Belize Barrier and Atoll Reefs. Oxford: International Association of Sedimentologists, Special Publication No. 3.

    Google Scholar 

  • Kennedy, W.J., and Garrison, R.E., 1975. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22: 311–386.

    Google Scholar 

  • Kinsman, D.J.J., 1966. Gypsum and anhydrite of Recent age, Trucial Coast, Persian Gulf. In Rau, J.L. (ed.), Second Symposium on Salt. Volume 1, Cleveland, OH: Northern Ohio Geological Society, pp. 302–326.

    Google Scholar 

  • Kinsman, D.J.J., 1974. Calcium sulfate minerals of evaporite deposits: their primary mineralogy. In Coogan, A.J. (ed.), Fourth Symposium on Salt, Volume 1, Cleveland, OH: Northern Ohio Geol. Soc., pp. 343–348.

    Google Scholar 

  • Land, L.S., 1984. Frio Sandstone diagenesis, Texas Gulf Coast: a regional isotopic study. In Mcdonald, D.A., and Surdam, R.C. (eds.), Clastic Diagenesis. Tulsa, OK: American Association of Petroleum Geologists Memoir, 37, pp. 47–62.

    Google Scholar 

  • MacKenzie, F.T., and Bricker, O.P., 1971. Cementation of sediments by carbonate minerals. In Bricker, O.P. (ed.), Carbonate Cements. Baltimore, MD: Johns Hopkins Press, pp. 239–246.

    Google Scholar 

  • Mazzullo, S.J., and Cys, J.M., 1979. Marine aragonite sea-floor growths and cements in Permian phylloid algal mounds, Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, 49: 917–936.

    Google Scholar 

  • McKenzie, J.A., 1981. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: a stable isotope study. Journal of Geology, 89: 185–198.

    Google Scholar 

  • Miller, J., 1988. Cathodoluminescence microscopy. In Tucker, M. (ed.), Techniques in Sedimentology. Oxford: Blackwell Scientific Publications, pp. 174–190.

    Google Scholar 

  • Moore, C.H., 1989. Carbonate Diagenesis and Porosity. New York: Elsevier.

    Google Scholar 

  • Mozley, P.S., and Burns, S.J., 1993. Oxygen and carbon isotopic composition of marine carbonate concretions: an overview. Journal of Sedimentary Petrology, 63: 73–83.

    Google Scholar 

  • Radke, B.M., and Mathis, R.L., 1980. On the formation and occurrence of saddle dolomite. Journal of Sedimentary Petrology, 50: 1149–1168.

    Google Scholar 

  • Reed, S.J.B., 1989. Ion microprobe analysis—a review of geological applications. Mineralogical Magazine, 53: 3–24.

    Google Scholar 

  • Reeder, R.J., 1991. An overview of zoning in carbonate minerals. In Barker, C.E., and Kopp, O.C. (eds.), Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. Tulsa, OK: SEPM Short Course 25, pp. 77–82.

    Google Scholar 

  • Rosler, H.J., and Lange, H., 1972. Geochemical Tables. Amsterdam: Elsevier.

    Google Scholar 

  • Sandberg, P.A., 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19–22.

    Google Scholar 

  • Schmoker, J.W., and Halley, R.B., 1982. Carbonate porosity versus depth: a predictable relation for south Florida. Bulletin of the American Association of Petroleum Geologists,. 66: 2561–2570.

    Google Scholar 

  • Scholle, P.A., 1978. A Color Illustrated Guide to Carbonate Rock Constituents, Textures, Cements, and Porosities. Tulsa, OK: American Association of Petroleum Geologists Memoir 27.

    Google Scholar 

  • Scholle, P.A., 1979. A Color Illustrated Guide to Constituents, Textures, Cements, and Porosities of Sandstones and Associated Rocks. Tulsa, OK: American Association of Petroleum Geologists Memoir 28.

    Google Scholar 

  • Scholle, P.A., and Halley, R.B., 1985. Burial diagenesis: out of sight, out of mind!. In Schneidermann, N., and Harris, P.M. (eds.), Carbonate Cements. Tulsa, OK: SEPM Special Publication No. 36, pp. 309–334.

    Google Scholar 

  • Scholle, P.A., Ulmer, D.S., and Melim, L.A., 1992. Late-stage calcites in the Permian Capitan Formation and its equivalents, Delaware Basin margin, west Texas and New Mexico: evidence for replacement of precursor evaporites. Sedimentology, 39: 207–234.

    Google Scholar 

  • Scoffin, T.P., and Stoddart, D.R., 1983. Beachrock and intertidal cements. In Goodie, A.S., and Pye, K. (eds.), Chemical Sediment and Geomorphology. London: Academic Press, pp. 401–425.

    Google Scholar 

  • Sibley, D.F., and Blatt, H., 1976. Intergranular pressure solution and cementation of the Tuscarora Quartzite. Journal of Sedimentary Petrology, 46: 881–896.

    Google Scholar 

  • Sippel, R.F., 1968. Sandstone petrology, evidence from luminescence petrography. Journal of Sedimentary Petrology, 38: 530–554.

    Google Scholar 

  • Walker, T.R., 1976. Diagenetic origin of continental red beds. In Falke, H. (ed.), The Continental Permian in Central West and South Europe. Dordrecht (Netherlands): D. Reidel Publishing Co., pp. 240–282.

    Google Scholar 

  • Williams, L.A., Parks, G.A., and Crerar, D.A., 1985. Silica diagenesis, I. Solubility controls. Journal of Sedimentary Petrology, 55: 301–311.

    Google Scholar 

  • Wollast, R., 1971. Kinetic aspects of the nucleation and growth of calcite from aqueous solutions. In Bricker, O.P. (ed.), Carbonate Cements. Baltimore, MD: Johns Hopkins Press, pp. 264–273.

    Google Scholar 

Cross-references

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Dowden, Hutchinson & Ross, Inc.

About this entry

Cite this entry

Scholle, P.A., Ulmer-Scholle, D. (1978). Cements and cementation. In: Middleton, G.V., Church, M.J., Coniglio, M., Hardie, L.A., Longstaffe, F.J. (eds) Encyclopedia of Sediments and Sedimentary Rocks. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3609-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3609-5_40

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0872-6

  • Online ISBN: 978-1-4020-3609-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics