Skip to main content

Next-Generation Bisulfite Sequencing for Targeted DNA Methylation Analysis

  • Protocol
  • First Online:
Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2458))

Abstract

Bisulfite sequencing is the “gold-standard” technique for DNA methylation analysis. By combining bisulfite sequencing with high-throughput, next-generation sequencing technology, we can document methylation from many thousands of individual reads (equivalent to alleles or “cells”), for multiple target regions and from many samples simultaneously. Here, we describe a next-generation bisulfite-sequencing assay for targeted DNA methylation analysis which offers scope for the simultaneous interrogation of multiple genomic loci across numerous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A (2020) Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer 6(5):392–406. https://doi.org/10.1016/j.trecan.2020.02.007

    Article  CAS  PubMed  Google Scholar 

  2. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56. https://doi.org/10.1016/B978-0-12-380866-0.60002-2

    Article  PubMed  Google Scholar 

  3. Bird A, Tate P, Nan X, Campoy J, Meehan R, Cross S, Tweedie S, Charlton J, Macleod D (1995) Studies of DNA methylation in animals. J Cell Sci Suppl 19:37–39. https://doi.org/10.1242/jcs.1995.supplement_19.5

    Article  CAS  PubMed  Google Scholar 

  4. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. https://doi.org/10.1038/ng1089

    Article  CAS  PubMed  Google Scholar 

  5. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  6. Beck S, Rakyan VK (2008) The methylome: approaches for global DNA methylation profiling. Trends Genet 24(5):231–237. https://doi.org/10.1016/j.tig.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  7. Weeks RJ, Morison IM (2006) Detailed methylation analysis of CpG islands on human chromosome region 9p21. Genes Chromosomes Cancer 45(4):357–364. https://doi.org/10.1002/gcc.20297

    Article  CAS  PubMed  Google Scholar 

  8. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ (2007) Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 35(18):e119. https://doi.org/10.1093/nar/gkm662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29(13):E65. https://doi.org/10.1093/nar/29.13.e65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. King JL, LaRue BL, Novroski NM, Stoljarova M, Seo SB, Zeng X, Warshauer DH, Davis CP, Parson W, Sajantila A, Budowle B (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci Int Genet 12:128–135. https://doi.org/10.1016/j.fsigen.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  12. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341. https://doi.org/10.1186/1471-2164-13-341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5):614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  PubMed  Google Scholar 

  14. Masser DR, Stanford DR, Freeman WM (2015) Targeted DNA methylation analysis by next-generation sequencing. J Vis Exp (96):52488. https://doi.org/10.3791/52488

  15. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431. https://doi.org/10.1093/bioinformatics/18.11.1427

    Article  CAS  PubMed  Google Scholar 

  16. Hakkaart C, Ellison-Loschmann L, Day R, Sporle A, Koea J, Harawira P, Cheng S, Gray M, Whaanga T, Pearce N, Guilford P (2019) Germline CDH1 mutations are a significant contributor to the high frequency of early-onset diffuse gastric cancer cases in New Zealand Maori. Familial Cancer 18(1):83–90. https://doi.org/10.1007/s10689-018-0080-8

    Article  PubMed  Google Scholar 

  17. Lutsik P, Feuerbach L, Arand J, Lengauer T, Walter J, Bock C (2011) BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic Acids Res 39(Web Server issue):W551–W556. https://doi.org/10.1093/nar/gkr312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Gruning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46(W1):W537–W544. https://doi.org/10.1093/nar/gky379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Professor Ian Morison, as the “driving force” behind the development of this high-throughput, next-generation bisulfite sequencing protocol and analysis workflow. While this protocol is the work of many, contributions from Jackie Ludgate, Luke Bridgman, Dr. Suzan Almomani, and Dr. Issam Mayyas were instrumental in developing the bisulfite sequencing protocol and the analysis workflow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Weeks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, J., Day, R.C., Weeks, R.J. (2022). Next-Generation Bisulfite Sequencing for Targeted DNA Methylation Analysis. In: Horsfield, J., Marsman, J. (eds) Chromatin. Methods in Molecular Biology, vol 2458. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2140-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2140-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2139-4

  • Online ISBN: 978-1-0716-2140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics