Skip to main content

Computational Analysis of Single-Cell RNA-Seq Data

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2284))

Abstract

Single-cell RNAseq data can be generated using various technologies, spanning from isolation of cells by FACS sorting or droplet sequencing, to the use of frozen tissue sections retaining spatial information of cells in their morphological context. The analysis of single cell RNAseq data is mainly focused on the identification of cell subpopulations characterized by specific gene markers that can be used to purify the population of interest for further biological studies. This chapter describes the steps required for dataset clustering and markers detection using a droplet dataset and a spatial transcriptomics dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ziegenhain, C., et al., (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell, 2017. 65(4): 631–643.e4

    Google Scholar 

  2. Gross A et al (2015) Technologies for Single-Cell Isolation. Int J Mol Sci 16(8):16897–16919

    Article  CAS  Google Scholar 

  3. Lecault V et al (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16(3–4):381–390

    Article  CAS  Google Scholar 

  4. Picelli S et al (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9(1):171–181

    Article  CAS  Google Scholar 

  5. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell 161(5):1202–1214

    Article  CAS  Google Scholar 

  6. Klein AM et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    Article  CAS  Google Scholar 

  7. Salmen F et al (2018) Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections. Nat Protoc 13(11):2501–2534

    Article  CAS  Google Scholar 

  8. Alessandri L et al (2019) rCASC: reproducible classification analysis of single-cell sequencing data. Gigascience 8(9)

    Google Scholar 

  9. Zheng GX et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  Google Scholar 

  10. Pezzotti N et al (2017) Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans Vis Comput Graph 23(7):1739–1752

    Article  Google Scholar 

  11. Wang B et al (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat Methods 14(4):414–416

    Article  CAS  Google Scholar 

  12. Serra D et al (2019) Self-organization and symmetry breaking in intestinal organoid development. Nature 569(7754):66–72

    Article  CAS  Google Scholar 

  13. Butler A et al (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411–420

    Article  CAS  Google Scholar 

  14. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297

    Article  CAS  Google Scholar 

  15. Delaney C et al (2019) Combinatorial prediction of marker panels from single-cell transcriptomic data. Mol Syst Biol 15(10):e9005

    Article  CAS  Google Scholar 

  16. Ordonez-Rueda D et al (2019) Apoptotic cell exclusion and bias-free single-cell selection are important quality control requirements for successful single-cell sequencing applications. Cytometry A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele A. Calogero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alessandrì, L., Cordero, F., Beccuti, M., Arigoni, M., Calogero, R.A. (2021). Computational Analysis of Single-Cell RNA-Seq Data. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 2284. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1307-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1307-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1306-1

  • Online ISBN: 978-1-0716-1307-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics