Skip to main content

Chemistry, Biological Activities, and Uses of Carnauba Wax

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Gums, Resins and Latexes of Plant Origin

Abstract

The major vegetable wax in the economy, carnauba wax (Copernicia prunifera (Miller) H. E. Moore) is used widely in food owing to the physiochemical properties of the food, with a majority of esters. Many recent studies have focused on the use of this wax in food preservation and processing, highlighting its function in taste microencapsulation, edible films, and superhydrophobic and biodegradable packaging. This book chapter explores the requirements for coating and discusses the various types of coating materials, biological effects, and physical and chemical properties of carnauba wax powder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AA:

Atomic absorption spectroscopy

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ANVISA:

Agência Nacional de Vigilância Sanitária

BW:

Bees wax

CAR:

Carnauba Wax

CNCs:

Cellulose nanocrystals

CP:

Cold plasma

CSW:

Carnauba-shellac wax

CW:

Carnauba wax

CWN:

Carnauba wax nano-emulsion

CWNs:

Carnauba wax nanoparticles

DPPH:

Compound 2,2-diphenyl-1-picrylhydrazyl

DSC:

Differential scanning calorimetry

ECF-125:

Extracellular fluid

EO:

Ethylene oxide

FAO:

Food and Agriculture Organization

FDA:

Food and Drug Administration

FRAP:

Ferric-reducing action potential

GML:

Glycerol monolaurate

GMP:

Good manufacturing practice

GRAS:

Generally recognized as safe

GSEs:

Grapefruit seed extracts

HBO-HOSO:

High oleic soyabean oil hydroboration-oxidation

HIV-gp:

Human immunodeficiency virus – glycoprotein

KGM:

Konjac glucomannan

KSO-NLC:

Kenaf seed oil-nanostructured lipid carrier

LBL:

Layer by layer

LO:

Lemongrass oil

ME:

Microemulsion

MPa:

Megapascal pressure unit

NE:

Nanoemulsion

NLC:

Nanostructured lipid carriers

NLSs:

Solid lipid nanoparticles

NSAID:

Nonsteroidal anti-inflammatory drug

OEO:

Oregano essential oil

PG:

Peptidoglycan

pH:

Potential of hydrogen

PUT:

Putrescine

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

SEM:

Scanning electron microscope

SiO2:

Silicon dioxide

SLM:

Solid lipid microparticles

SLNPs:

Solid lipid nanoparticles

SPF:

Sun protection factor

SS:

Soluble solids

TA:

Titratable acidity

UV:

Ultraviolet

WVP:

Water vapor permeability

X-ray:

X-radiation

ZnO:

Zinc oxide

References

  1. da Silva Andrade LB, da Silva Julião MS, Carneiro Vera Cruz R et al (2018) Antioxidant and antifungal activity of carnauba wax powder extracts. Ind Crops Prod 125:220–227

    Google Scholar 

  2. de Carvalho FPA, Gomes JMA (2008) Eco-efficiency in the production of Carnaúba wax in the municipality of Campo Maior, Piauí, 2004. Rev Econ Sociol Rural 46:421–453

    Google Scholar 

  3. da Ponte IA, Muthuvel M, Saravanabhavan S, Benjamin SR (2020) The phytochemical composition of medicinal plants: Brazilian semi-arid region (Caatinga). In: Rao V, Mans D, Rao L (eds) Phytochemicals in human health. IntechOpen, Rijeka

    Google Scholar 

  4. Taube E (1952) Carnauba wax-product of a Brazilian palm. Econ Bot 6:1952

    Google Scholar 

  5. Anzenberger C, Li S, Bouzidi L, Narine SS (2016) Synthesis of waxes from vegetable oil derived self-metathesized aliphatic esters. Ind Crops Prod 89:368–375

    CAS  Google Scholar 

  6. Lozhechnikova A, Bellanger H, Michen B et al (2017) Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl Surf Sci 396:1273–1281

    CAS  Google Scholar 

  7. de Almeida BC, Araújo BQ, Carvalho AA, Freitas SD, Maciel DD, Ferreira AJ, Tempone AG, Martins LF, Alexandre TR, Chaves MH, Lago JH (2016) Antiprotozoal activity of extracts and isolated triterpenoids of ‘carnauba’ (Copernicia prunifera) wax from Brazil. Pharm Biol 54(12):3280–3284. https://doi.org/10.1080/13880209.2016.1224257. Epub 2016 Aug 28. PMID: 27569846

  8. Harron AF, Powell MJ, Nunez A, Moreau RA (2017) Analysis of sorghum wax and carnauba wax by reversed phase liquid chromatography mass spectrometry. Ind Crops Prod 98:116–129

    CAS  Google Scholar 

  9. de Brito CJ, Braz-Filho R, Assunção MV et al (2006) 1H and 13C NMR spectral assignments of four dammarane triterpenoids from carnauba wax. Magn Reson Chem 44:641–643

    Google Scholar 

  10. de S Dantas AN, Magalhães TA, Matos WO et al (2013) Characterization of carnauba wax inorganic content. J Am Oil Chem Soc 90:1475–1483

    CAS  Google Scholar 

  11. Zlokarnik M (2012) Ullmann’s encyclopedia of industrial chemistry, vol 25. Wiley, Weinheim, pp 1–40

    Google Scholar 

  12. European Food Safety Authority (2012) Scientific opinion on the re-evaluation of carnauba wax (E 903) as a food additive. EFSA J 10:10

    Google Scholar 

  13. Anvisa (2011)Agência Nacional de Vigilância Sanitária Agenda Nacional de Prioridades de Pesquisa em Vigilância Sanitária. Brasília: Núcleo de Educação, Pesquisa e Conhecimento – NEPEC/ANVISA. 1–15

    Google Scholar 

  14. FDA (1983) Food and drugs. Chapter 9 – federal food, drug, and cosmetic act. Subchapter II – definitions. Sect. 321 – definitions; generally

    Google Scholar 

  15. Triebold HO (1946) Quantitative analysis: with applications to agricultural and food products. D. van Nostrand, New York

    Google Scholar 

  16. Rufino MSM, Alves RE, de Brito ES et al (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002

    CAS  Google Scholar 

  17. Bashari A, Koohestani AHS, Salamatipour N (2020) Eco-friendly dual-functional textiles: green water-repellent & anti-bacterial. Fibers Polym 21:317–323

    CAS  Google Scholar 

  18. Gupta S, Ivvala J, Grewal HS (2021) Development of natural wax based durable superhydrophobic coatings. Ind Crops Prod 171:113871

    CAS  Google Scholar 

  19. Mahcene Z, Khelil A, Hasni S et al (2020) Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int J Biol Macromol 145:124–132

    CAS  PubMed  Google Scholar 

  20. de Oliveira Filho JG, de Oliveira Nobre Bezerra CC, Albiero BR et al (2020) New approach in the development of edible films: the use of carnauba wax micro- or nanoemulsions in arrowroot starch-based films. Food Packag Shelf Life 26:100589

    Google Scholar 

  21. de Oliveira Filho JG, Albiero BR, Cipriano L et al (2021) Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: a new functional material for food packaging applications. Cellulose 28:6499–6511

    Google Scholar 

  22. Eyng C, Nunes KC, Matumoto-Pintro PT et al (2021) Carnauba wax coating preserves the internal quality of commercial eggs during storage. Semin Cienc Agrar 42:1229–1244

    CAS  Google Scholar 

  23. Fei T, Leyva-Gutierrez FMA, Wan Z, Wang T (2021) Development of a novel soy-wax containing emulsion with enhanced antifungal properties for the postharvest treatment of fresh citrus fruit. LWT Food Sci Technol 141:110878

    CAS  Google Scholar 

  24. Romani VP, Olsen B, Pinto Collares M et al (2020) Cold plasma and carnauba wax as strategies to produce improved bi-layer films for sustainable food packaging. Food Hydrocoll 108:106087

    CAS  Google Scholar 

  25. Lufu R, Ambaw A, Opara UL (2020) Water loss of fresh fruit: influencing pre-harvest, harvest and postharvest factors. Sci Hortic 272:109519. https://doi.org/10.1016/j.scienta.2020.109519

    Article  Google Scholar 

  26. de Campos A, Claro PC, Luchesi BR et al (2019) Curaua cellulose sheets dip coated with micro and nano carnauba wax emulsions. Cellulose 26:7983–7993

    Google Scholar 

  27. Szumała P, Luty N (2016) Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids Surf A Physicochem Eng Asp 499:131–140

    Google Scholar 

  28. Celik N, Torun I, Ruzi M et al (2020) Fabrication of robust superhydrophobic surfaces by one-step spray coating: evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem Eng J 396:125230

    CAS  Google Scholar 

  29. Celik N, Kiremitler NB, Ruzi M, Onses MS (2021) Waxing the soot: practical fabrication of all-organic superhydrophobic coatings from candle soot and carnauba wax. Prog Org Coat 153:106169

    CAS  Google Scholar 

  30. Buitimea-Cantúa GV, Serna-Saldívar SO, Pérez-Carrillo E et al (2021) Effect of quality of carnauba wax (Copernica cerífera) on microstructure, textural, and rheological properties of soybean oil-based organogels. LWT Food Sci Technol 136:110267

    Google Scholar 

  31. Lacroix M, Le Tien C (2005) Edible films and coatings from non-starch polysaccharides. In: Han JH (ed) Innovations in food packaging. Elsevier Academic Press, San Diego

    Google Scholar 

  32. Won MY, Min SC (2018) Coating Satsuma mandarin using grapefruit seed extract–incorporated carnauba wax for its preservation. Food Sci Biotechnol 27:1649–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang H, Li X, Lu G (2018) Effect of carnauba wax-based coating containing glycerol monolaurate on decay and quality of sweet potato roots during storage. J Food Prot 81:1643–1650

    CAS  PubMed  Google Scholar 

  34. Md Nor S, Ding P (2020) Trends and advances in edible biopolymer coating for tropical fruit: a review. Food Res Int 134:109208

    CAS  PubMed  Google Scholar 

  35. Costa JDDS, Neto AF, Almeida FDAC, Costa MDS (2018) Conservation of “Tommy atkins” mangoes stored under passive modified atmosphere. Rev Caatinga 31:117–125

    Google Scholar 

  36. Wang D, Huang J, Guo Z, Liu W (2021) Durable mixed edible wax coating with stretching superhydrophobicity. J Mater Chem A 9:1495–1499

    CAS  Google Scholar 

  37. da Mota WF, Salomão LCC, Cecon PR, Finger FL (2003) Waxes and plastic film in relation to the shelf life of yellow passion fruit. Sci Agric 60:51–57

    Google Scholar 

  38. Rastegar S, Hassanzadeh Khankahdani H, Rahimzadeh M (2019) Effectiveness of alginate coating on antioxidant enzymes and biochemical changes during storage of mango fruit. J Food Biochem 43:e12990

    PubMed  Google Scholar 

  39. Germano TA, Aguiar RP, Bastos MSR et al (2019) Galactomannan-carnauba wax coating improves the antioxidant status and reduces chilling injury of “Paluma” guava. Postharvest Biol Technol 149:9–17

    CAS  Google Scholar 

  40. Gutiérrez-Pacheco MM, Ortega-Ramírez LA, Silva-Espinoza BA et al (2020) Individual and combined coatings of chitosan and carnauba wax with oregano essential oil to avoid water loss and microbial decay of fresh cucumber. Coatings 10:614

    Google Scholar 

  41. da Silva MC, Atarassi ME, Ferreira MD, Mosca MA (2011) Post-harvest quality of “fuyu” persimmon with use of different edible coverage concentrations. Sci Agrotechnol 35:144–151

    Google Scholar 

  42. Machado FLC, Costa JMC, Batista EN (2012) Application of carnauba-based wax maintains postharvest quality of “Ortanique” tangor. Food Sci Technol 32:261–268

    Google Scholar 

  43. Jo W-S, Song H-Y, Song N-B et al (2014) Quality and microbial safety of “Fuji” apples coated with carnauba-shellac wax containing lemongrass oil. LWT Food Sci Technol 55:490–497

    CAS  Google Scholar 

  44. Barman K, Asrey R, Pal RK et al (2014) Influence of putrescine and carnauba wax on functional and sensory quality of pomegranate (Punica granatum L.) fruits during storage. J Food Sci Technol 51:111–117

    CAS  PubMed  Google Scholar 

  45. Barman K, Asrey R, Pal RK (2011) Putrescine and carnauba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Sci Hortic 130:795–800

    CAS  Google Scholar 

  46. Motamedi E, Nasiri J, Malidarreh TR et al (2018) Performance of carnauba wax-nanoclay emulsion coatings on postharvest quality of “Valencia” orange fruit. Sci Hortic 240:170–178

    CAS  Google Scholar 

  47. Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F (2010) Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine 6:753–759

    CAS  PubMed  Google Scholar 

  48. Madureira AR, Campos DA, Fonte P et al (2015) Characterization of solid lipid nanoparticles produced with carnauba wax for rosmarinic acid oral delivery. RSC Adv 5:22665–22673

    CAS  Google Scholar 

  49. Arias MA, Loxley A, Eatmon C et al (2011) Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine 29:1258–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  50. El-Menshawe SF, Sayed OM, Abou Taleb HA et al (2020) The use of new quinazolinone derivative and doxorubicin loaded solid lipid nanoparticles in reversing drug resistance in experimental cancer cell lines: a systematic study. J Drug Deliv Sci Technol 56:101569

    CAS  Google Scholar 

  51. Villalobos-Hernández JR, Müller-Goymann CC (2005) Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media. Eur J Pharm Biopharm 60:113–122

    PubMed  Google Scholar 

  52. Medeiros TS, Moreira LMCC, Oliveira TMT et al (2020) Bemotrizinol-loaded carnauba wax-based nanostructured lipid carriers for sunscreen: optimization, characterization, and in vitro evaluation. AAPS PharmSciTech 21:288

    CAS  PubMed  Google Scholar 

  53. Naktinienė M, Eisinaitė V, Keršienė M et al (2021) Emulsification and gelation as a tool for iron encapsulation in food-grade systems. LWT Food Sci Technol 149:111895

    Google Scholar 

  54. Aliasl Khiabani A, Tabibiazar M, Roufegarinejad L et al (2020) Preparation and characterization of carnauba wax/adipic acid oleogel: a new reinforced oleogel for application in cake and beef burger. Food Chem 333:127446

    CAS  PubMed  Google Scholar 

  55. Lee XY, Chu CC, Hasan ZABA et al (2019) Novel nanostructured lipid carriers with photoprotective properties made from carnauba wax, beeswax, and Kenaf seed oil. J Am Oil Chem Soc 96:201–211

    CAS  Google Scholar 

  56. Chu CC, Tan CP, Nyam KL (2019) Development of nanostructured lipid carriers (NLCs) using pumpkin and Kenaf seed oils with potential photoprotective and antioxidative properties. Eur J Lipid Sci Technol 121:1900082

    CAS  Google Scholar 

  57. Chu CC, Hasan ZABA, Chua SK, Nyam KL (2020) Formulation and characterization of novel nanostructured lipid carriers with photoprotective properties made from carnauba wax, beeswax, pumpkin seed oil, and UV filters. J Am Oil Chem Soc 97:531–542

    CAS  Google Scholar 

  58. de Meneses AC, Marques EBP, Leimann FV et al (2019) Encapsulation of clove oil in nanostructured lipid carriers from natural waxes: preparation, characterization and in vitro evaluation of the cholinesterase enzymes. Colloids Surf A Physicochem Eng Asp 583:123879

    Google Scholar 

  59. Galvão JG, Santos RL, Lira AAM et al (2020) Stearic acid, beeswax and carnauba wax as green raw materials for the loading of carvacrol into nanostructured lipid carriers. Appl Sci 10:6267

    Google Scholar 

  60. dos Santos FKG, Silva KNO, Xavier TDN et al (2017) Effect of the addition of carnauba wax on physicochemical properties of chitosan films. Mater Res 20:479–484

    Google Scholar 

  61. Zhang Y, Simpson BK, Dumont M-J (2018) Effect of beeswax and carnauba wax addition on properties of gelatin films: a comparative study. Food Biosci 26:88–95

    CAS  Google Scholar 

  62. Öğütcü M, Arifoğlu N, Yılmaz E (2015) Storage stability of cod liver oil organogels formed with beeswax and carnauba wax. Int J Food Sci Technol 50:404–412

    Google Scholar 

  63. Lim J, Jeong S, Oh IK, Lee S (2017) Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT Food Sci Technol 84:788–794

    CAS  Google Scholar 

  64. Yang S, Yang G, Chen X et al (2020) Interaction of monopalmitate and carnauba wax on the properties and crystallization behavior of soybean oleogel. Grain Oil Sci Technol 3:49–56

    Google Scholar 

  65. Yi B, Kim M-J, Lee SY, Lee J (2017) Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Sci Biotechnol 26:79–87

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moon K, Choi K-O, Jeong S et al (2021) Solid fat replacement with canola oil-carnauba wax oleogels for dairy-free imitation cheese low in saturated fat. Foods 10:1351

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mert B, Demirkesen I (2016) Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT Food Sci Technol 68:477–484

    CAS  Google Scholar 

  68. Haruna MH, Wang Y, Pang J (2019) Konjac glucomannan-based composite films fabricated in the presence of carnauba wax emulsion: hydrophobicity, mechanical and microstructural properties evaluation. J Food Sci Technol 56:5138–5145

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Galus S, Gaouditz M, Kowalska H, Debeaufort F (2020) Effects of candelilla and carnauba wax incorporation on the functional properties of edible sodium caseinate films. Int J Mol Sci 21:9349

    CAS  PubMed Central  Google Scholar 

  70. Oliveira RB, Nascimento TL, Lima EM (2012) Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles. Drug Dev Ind Pharm 38:1–11

    CAS  PubMed  Google Scholar 

  71. Matsumoto A, Ono A, Murao S, Murakami M (2018) Microparticles for sustained release of water-soluble drug based on a containment, dry coating technology. Drug Discov Ther 12:347–354

    CAS  PubMed  Google Scholar 

  72. El-Bagory I, Barakat N, Ibrahim MA, El-Enazi F (2012) Formulation and in vitro evaluation of theophylline matrix tablets prepared by direct compression: effect of polymer blends. Saudi Pharm J 20:229–238

    PubMed  Google Scholar 

  73. Pawar HA, Dhavale R (2014) Development and evaluation of gastroretentive floating tablets of an antidepressant drug by thermoplastic granulation technique. Beni-Suef Univ J Basic Appl Sci 3:122–132

    Google Scholar 

  74. Chiumarelli M, Hubinger MD (2014) Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocoll 38:20–27

    CAS  Google Scholar 

  75. Rodrigues DC, Caceres CA, Ribeiro HL et al (2014) Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films. Food Hydrocoll 38:147–151

    CAS  Google Scholar 

  76. Miyagawa Y (1996) Controlled-release of diclofenac sodium from wax matrix granule. Int J Pharm 138:215–224

    CAS  Google Scholar 

  77. Nart V, Beringhs AO, França MT et al (2017) Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs. Mater Sci Eng C 70:250–257

    CAS  Google Scholar 

  78. Sharma S, Sathasivam T, Rawat P, Pushpamalar J (2021) Lycopene-loaded nanostructured lipid carrier from carboxymethyl oil palm empty fruit bunch cellulose for topical administration. Carbohydr Polym Technol Appl 2:100049

    Google Scholar 

  79. Liu W, He Y, Zhang Y, Liu Y, Long L, Shen F, Yang G, Zhang X, Zhang S, Deng S (2020) A novel smart coating with ammonia-induced switchable superwettability for oily wastewater treatment. J Environ Chem Eng 8(5):104164. ISSN 2213-3437. https://doi.org/10.1016/j.jece.2020.104164

  80. Neto JPC, Bezerra LR, da Silva AL et al (2019) Methionine microencapsulated with a carnauba (Copernicia prunifera) wax matrix for protection from degradation in the rumen. Livest Sci 228:53–60

    Google Scholar 

  81. Müller MG, Lindner JA, Briesen H et al (2018) On the properties and application of beeswax, carnauba wax and palm fat mixtures for hot melt coating in fluidized beds. Adv Powder Technol 29:781–788

    Google Scholar 

  82. da Rocha BA, Francisco CRL, de Almeida M et al (2020) Antiinflammatory activity of carnauba wax microparticles containing curcumin. J Drug Deliv Sci Technol 59:101918

    CAS  Google Scholar 

  83. Cruz MAL, Gomes VM, Fernandes KVS et al (2002) Identification and partial characterization of a chitinase and a β-1,3-glucanase from Copernicia cerifera wax. Plant Physiol Biochem 40:11–16

    CAS  Google Scholar 

  84. Gonçalves FP, Martins MC, Junior GJS et al (2010) Postharvest control of brown rot and Rhizopus rot in plums and nectarines using carnauba wax. Postharvest Biol Technol 58:211–217

    Google Scholar 

  85. Meikle WG, Mercadier G, Holst N, Girod V (2008) Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health. Exp Appl Acarol 46:105–117

    PubMed  Google Scholar 

  86. Carnaúba R (2004) Técnico de identidade e de qualidade para a classificação da cera de Brasil. Ministério da Agricultura, Pecuária e Abastecimento Gabinete do Ministro Instrução Normativa no. 34, de 30 de novembro de 2004

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Coordination for the Improvement of Higher Education Personnel (CAPES)-Brazil and Drug Research and Development Center (NPDM), Federal University of Ceará (UFC), Fortaleza, Brazil.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Junior, E.J.M.R. et al. (2022). Chemistry, Biological Activities, and Uses of Carnauba Wax. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_37-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_37-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Chemistry, Biological Activities, and Uses of Carnauba Wax
    Published:
    01 April 2022

    DOI: https://doi.org/10.1007/978-3-030-76523-1_37-2

  2. Original

    Chemistry, Biological Activities, and Uses of Carnauba Wax
    Published:
    22 December 2021

    DOI: https://doi.org/10.1007/978-3-030-76523-1_37-1