Skip to main content

Molten Salt Electrowinning of Metals and Materials: Opportunities and Challenges

  • Chapter
  • First Online:
Indian Metallurgy

Abstract

Conventional metallurgical processes to produce metals involve carbothermal reduction of their compounds and suffer from massive carbon emissions. Electrowinning using aqueous electrolytes is a demonstrated approach to obtain many metals. However, aqueous electrolytes are not suitable to produce several classes of metals such as alkali, alkaline earth, refractory, rare earths, and actinides due to their high negative reduction potentials. Molten salt electrolysis is a commercially viable and feasible route for the production of these metals. The present chapter details on the molten salt electrowinning of alkali, alkaline earth, rare earths and refractory metals with a special focus on the efforts at CSIR CECRI in this niche area of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasalizadeh, A., Teng, L., Sridhar, S., Seetharaman, S.: Trans. Inst. Miner. Metall. Sect. C Miner. Process. Extr. Metall. 124, 191–198 (2015)

    Google Scholar 

  • Al-Jothery, H.K.M., Albarody, T.M.B., Yusoff, P.S.M., Abdullah, M.A., Hussein, A.R.: IOP Conf. Ser. Mater. Sci. Eng. 863 (2020)

    Google Scholar 

  • Andrew, C., Jayakumar, M., Chithambara Thanu, V.R.: Surf. Interfaces 19, 100539 (2020)

    Google Scholar 

  • Andrew, C., Dhivya, M., Jayakumar, M.: J. Electroanal. Chem. 115398 (2021)

    Google Scholar 

  • Behrsing, T., Deacon, G.B., Junk, P.C.: The Chemistry of Rare Earth Metals, Compounds, and Corrosion Inhibitors. Woodhead Publishing Limited (2014)

    Google Scholar 

  • Berchmans, L.J.: Improved Process with New Cell Design for the Production of Calcium Metal, 225/NF/2003 (2003)

    Google Scholar 

  • Bermejo, M.R., Barrado, E., Martínez, A.M., Castrillejo, Y.: J. Electroanal. Chem. 617, 85–100 (2008)

    Article  CAS  Google Scholar 

  • Bharadwaj, M.D., Kumar, P.: Natl. Conf. “Critical Strateg. Mater. Adv. Technol. (CSMAT-2017)” (2017)

    Google Scholar 

  • Cao, P., Zhang, M., Han, W., Yan, Y., Wei, S., Zheng, T.: J. Rare Earths 29, 763–767 (2011)

    Article  CAS  Google Scholar 

  • Caravaca, C., de Córdoba, G., Tomás, M.J., Rosado, M.: J. Nucl. Mater. 360, 25–31 (2007)

    Article  CAS  Google Scholar 

  • Castrillejo, Y., Bermejo, M.R., Pardo, R., Martínez, A.M.: J. Electroanal. Chem. 522, 124–140 (2002)

    Article  CAS  Google Scholar 

  • Castrillejo, Y., Fernández, P., Bermejo, M.R., Barrado, E., Martínez, A.M.: Electrochim. Acta 54, 6212–6222 (2009)

    Article  CAS  Google Scholar 

  • Castrillejo, Y., Fernández, P., Medina, J., Vega, M., Barrado, E.: Electroanalysis 23, 222–236 (2011)

    Article  CAS  Google Scholar 

  • Castrillejo, Y., Hernández, P., Rodriguez, J.A., Vega, M., Barrado, E.: Electrochim. Acta 71, 166–172 (2012)

    Article  CAS  Google Scholar 

  • Castrillejo, Y., Bermejo, M.R., Díaz Arocas, P., Martínez, A.M., Barrado, E.: J. Electroanal. Chem. 575, 61–74 (2005)

    Google Scholar 

  • Chamelot, P., Taxil, P., Oquab, D., Serp, J., Lafage, B.: J. Electrochem. Soc. 147, 4131–4137 (2000)

    Article  CAS  Google Scholar 

  • Chenyao, S., Che, Y., Li, J., Shu, Y., He, J., Song, J.: Integr. Med. Res. 9, 9341–9347 (n.d.)

    Google Scholar 

  • Choate, W.T., Green, J.A.S.: US, Department Energy Effic. Renew. Energy 12–24 (2000)

    Google Scholar 

  • Coey, J.M.D.: Engineering 6(2), 119–131 (2020)

    Article  CAS  Google Scholar 

  • De Nora, V., Spaziante, P.M., Nidola, A.: Molten salt electrolysis. US4187155A

    Google Scholar 

  • Dessemond, C., Lajoie-Leroux, F., Soucy, G., Laroche, N., Magnan, J.F.: Minerals 9 (2019)

    Google Scholar 

  • Dubrovskiy, A., Makarova, O., Kuznetsov, S.: Coatings 8(12), 442 (2018)

    Article  Google Scholar 

  • Dysinger, D.K., Murphy, J.E.: 1–8 (1994)

    Google Scholar 

  • Fray, D.: J. Miner. Metals Mater. 40, 420 (1988)

    Google Scholar 

  • D.J. Fray, October 60 (n.d.)

    Google Scholar 

  • Gale, R.J., White, S.H., Lovering, D.G. (eds.): Molten Salt Technique. Plenum Press, New York (1983)

    Google Scholar 

  • Ganguli, R., Cook, D.: Rare earths: a review of the landscape. MRS Energy Sustain. 5, E9 (2018)

    Article  Google Scholar 

  • Gao, Y., Shi, Y., Liu, X., Huang, C., Li, B.: Electrochim. Acta 190, 208–214 (2016)

    Article  CAS  Google Scholar 

  • Ghareh Bagh, F.S., Mjalli, F.S., Hashim, M.A., Hadj-Kali, M.K.O., Alnashef, I.M.: Ind. Eng. Chem. Res. 52, 11488–11493 (2013)

    Google Scholar 

  • Gilbert, H.N.: J. Electrochem. Soc. 99, 305C (1952)

    Article  CAS  Google Scholar 

  • Gleb Mamanto, R.M.: Molten Salt Chemistry, An Introduction and Selected Applications. O. Reidal Publishing Company (1987)

    Google Scholar 

  • Gourishankar, K.V., Karell, E.: Report in TMS Annual meeting, San Diego, California (1999)

    Google Scholar 

  • Guertler, W.: Molybdenum as a constituent in alloys, Z. Metallkd. 15, 151–154 (1923)

    Google Scholar 

  • Gupta, G.K., Krishnamurthy, N.: Extr. Metall. Rare Earths (1992)

    Google Scholar 

  • Han, W., Li, M., Zhang, M.L., De Yan, Y.: Rare Met. 35, 811–825 (2016)

    Article  Google Scholar 

  • Han, W., Li, Z., Li, M., Hu, X., Yang, X., Zhang, M., Sun, Y.: J. Electrochem. Soc. 164, D934–D943 (2017)

    Article  CAS  Google Scholar 

  • Haque, N., Hughes, A., Lim, S., Vernon, C.: Resources 3, 614–635 (2014)

    Article  Google Scholar 

  • Haupin, W.E., Frank, W.B.: Compr. Treatise Electrochem. 301–325 (1981)

    Google Scholar 

  • Heilig, M.L.: Personal communication 131–134 (1994)

    Google Scholar 

  • Hine, F.: Fused salt electrolysis and electrothermics. In: Electrode Processes and Electrochemical Engineering. Plenum Press, New York (1985)

    Google Scholar 

  • Huang, Z., Liu, J., Deng, X., Zhang, H., Lu, L., Hou, Z., Zhang, S.: Int. J. Refract. Metals Hard Mater. 54, 315–321 (2016)

    Article  CAS  Google Scholar 

  • Petrovic, S.: Industrial electrochemical processes. In: Electrochemistry Crash Course for Engineers. Springer, Cham (2021)

    Google Scholar 

  • Inman, D., Lovering, D.G.: Compr. Treatise Electrochem. 593–640 (1983)

    Google Scholar 

  • Inman, D., White, S.H.: J. Appl. Electrochem. 8, 375–390 (1978)

    Article  CAS  Google Scholar 

  • Janz, G.J.: Thermodynamic and Transport Properties for Molten Salts Correlation Equations for Critically Evaluated Density. American Chemical Society and the American Institute of Physics for the National Bureau of Standards, New York (1988)

    Google Scholar 

  • Jeong, S.M., Yoo, H.Y., Hur, J., Seo, C.: J. Alloys Compd. 452, 27–31 (2008)

    Article  CAS  Google Scholar 

  • Jha, M.K., Kumari, A., Panda, R., Rajesh Kumar, J., Yoo, K., Lee, J.Y.: Hydrometallurgy 165, 2–26 (2016)

    Google Scholar 

  • Kannan, G.N., Dandapani, K.S., Srinivasan, K.S., Srinivasan, L.K., Subramanian, P., Augustin, C.O., Selvin Devasakayam, T., Rajagopalan, N.: Report in Proc. Electrometallurgy Confs. India (1986)

    Google Scholar 

  • Keppler, S., Messing, T., Proulx, K., Jain, D.: Molten salt electrolysis of alkali metals. US20010045365A1 (2001)

    Google Scholar 

  • Kipouros, G.J., Sadoway, D.R.: Jom 50, 24–33 (1998)

    CAS  Google Scholar 

  • Kondo, M., Tanaka, T., Muroga, T., Tsujimura, H., Ito, Y.: Plasma Fusion Res. 7, 7–9 (2012)

    Google Scholar 

  • Konings, R.J.M., Beneš, O., Kovács, A., Manara, D., Sedmidubskỳ, D., Gorokhov, L., Iorish, V.S., Yungman, V., Shenyavskaya, E., Osina, E.: J. Phys. Chem. Ref. Data 43 (2014)

    Google Scholar 

  • Krishnamoorthy, N., Guptha, C.K.: Miner. Process. Extr. Metall. Rev. 22, 477–507 (2008)

    Article  Google Scholar 

  • Krishnan, A., Lu, X.G., Pal, U.B.: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 36, 463–473 (2005)

    Google Scholar 

  • Kuznetsov, S.A., Gaune-escard, M.: J. Nucl. Mater. 414, 126–131 (2011)

    Article  CAS  Google Scholar 

  • Lantelme, F., Groult, H.: Trans. Inst. Miner. Metall. Sect. C Miner. Process. Extr. Metall. 119, 82–87 (2010)

    Google Scholar 

  • Lee, G.G., Jo, S.K., Lee, C.K., Ryu, H.Y., Lee, J.H.: TMS Annu. Meet., pp. 249–252. 15–19-March (2015)

    Google Scholar 

  • Li, Y., Wang, F., Zhang, M., Han, W., Tian, Y.: J. Rare Earths 29, 378–382 (2011)

    Article  CAS  Google Scholar 

  • Liddell, R.G.B., Sadoway, R.: Refractory metals extraction, processing and applications. Int. Nucl. Inf. Syst. (1990)

    Google Scholar 

  • Lide, D.: Handbook of Chemistry and Physics, 87th edn. CRC Press, Boca Raton, FI (2006)

    Google Scholar 

  • Lovering, D.G.: Molten Salt Technology. Springer, United States (1982)

    Google Scholar 

  • Lu, H., Jia, W., Liao, C., Yuan, W.: Pilot experiments of magnesia direct electrolysis in a 5KA magnesium reduction cell. In: Essential Readings in Magnesium Technology, pp. 101–105. Springer, Cham (2016)

    Google Scholar 

  • Lucas, J., Lucas, P., Rochelle, L., Davenport, W.: Rare Earths Rare Earths Production and Use. Elsevier Ltd., (2015)

    Google Scholar 

  • Lukasko, J.J., Murphy, J.E.: Personal communication (1990)

    Google Scholar 

  • Mamantov, G.E., Marassi, R.: Molten Salt Chemistry: An Introduction and Selected Applications. Springer Science & Business Media (2012)

    Google Scholar 

  • Margarido, F., Vieceli, N., Durão, F., Guimarães, C., Nogueira, C.A.: Comun. Geológicas 101, 795–798 (2014)

    CAS  Google Scholar 

  • Minh, N.Q.: JOM 37, 28–33 (1985)

    Article  Google Scholar 

  • Mishra, B., Olson, D.L.: J. Phys. Chem. Solids 66, 396–401 (2005)

    Article  CAS  Google Scholar 

  • Mosander, C.G.: The preparation of cerium by reduction of CeCl with potassium, Pogg. Ann. 11, 406–416 (1827)

    Google Scholar 

  • Mouron, L.: Comput. Chem. 21, 431–435 (1997)

    Article  CAS  Google Scholar 

  • Naboychenko, S.S., Murashova, I.B., State, U.: Production of Rare Metal Powders. Elsevier Ltd. (n.d.)

    Google Scholar 

  • Ono, Y., Yamaguchi, M., Application, F., Data, P.: 1 (2009)

    Google Scholar 

  • Osaka, T., Ito, Y., Aladjov, K., Stoyanova, A., Sefman, J.R., Lin, Y.P., Masuko, N. (eds.): Electrochemical Technology: Innovation and New Technologies. CRC Press (1997)

    Google Scholar 

  • Osarinmwian, C.: ChemRxiv, 48 (2019)

    Google Scholar 

  • Pal, U.B., Woolley, D.E., Kenney, G.B.: Jom 53, 32–35 (2001)

    Article  CAS  Google Scholar 

  • Panigrahi, M., Iizuka, A., Shibata, E., Nakamura, T.: J. Alloys Compd. 550, 545–552 (2013)

    Article  CAS  Google Scholar 

  • Ray, H.S., Sridhar, R.: Extraction of Nonferrous Metals. East-West Press Pvt Ltd (1985)

    Google Scholar 

  • Rayaprolu, S., Chidambaram, D.: ECS Trans. 58, 51–66 (2014)

    Article  Google Scholar 

  • Redkin, A.A., Nikolaeva, E.V., Dedyukhin, A.E., Zaikov, Y.P.: Ionics (kiel) 18, 255–265 (2012)

    Article  CAS  Google Scholar 

  • Saïla, A., Gibilaro, M., Massot, L., Chamelot, P., Taxil, P., Affoune, A.M.: J. Electroanal. Chem. 642, 150–156 (2010)

    Article  Google Scholar 

  • Sehra, J.C., Suri, A.K.: High Temp. Mater. Process. 11, 255–292 (1993)

    Article  CAS  Google Scholar 

  • Sehra, J.C., Vijay, P.L.: Miner. Process. Extr. Metall. Rev. 19, 523–556 (1998)

    Article  Google Scholar 

  • Senderoff, S.: Metall. Rev. 11, 97–112 (1966)

    Article  Google Scholar 

  • Sharma, R.A.: Jom 48, 39–43 (1996)

    Article  CAS  Google Scholar 

  • Sohn, H.Y., Geskin, E.S.: Jom 42, 32–34 (1990)

    Article  Google Scholar 

  • Springer, C., Hasanbeigi, A.: Emerging Energy Efficiency and Carbon Dioxide Emissions-Reduction Technologies for Industrial Production of Aluminum, pp. 1–35 (2016)

    Google Scholar 

  • Stewart, P.D., Michael, C.: Production of sodium. US3257297A (1961)

    Google Scholar 

  • Sunshot: Molten Salt—Concept Definition & Capital Cost Estimate, Proj. No. 042839. (2016)

    Google Scholar 

  • Takeda, O., Nakano, K., Sato, Y.: Mater. Trans. 55, 334–341 (2014)

    Article  CAS  Google Scholar 

  • Thayer, A.M.: Having the mettle for sodium markets. Chem. Eng. News 86(43), 20–21 (2008)

    Google Scholar 

  • Thompson, J.S., Blank, H.M., Simmons, W.J., Bergmann, O.R.: Low temperature alkali metal electrolysis. US20020088719 (2002)

    Google Scholar 

  • Thonstad, J.: Miner. Process. Extr. Metall. Rev. 10(1), 41–55 (1992)

    Article  Google Scholar 

  • Tyrer, M., Gibbon, A.: Strat. Important Metals 69, 12–13 (2012)

    Google Scholar 

  • USGS: J. Chem. Inf. Model. 2020–2021 (2021)

    Google Scholar 

  • Vandarkuzhali, S., Gogoi, N., Ghosh, S., Prabhakara Reddy, B., Nagarajan, K.: Electrochim. Acta 59, 245–255 (2012)

    Google Scholar 

  • Viswanathan, S.: Bull. Electrochem. 1, 561–567 (1985)

    CAS  Google Scholar 

  • Vogel, H.: Proceeding EMC, pp. 1–13 (2015)

    Google Scholar 

  • Vol’skii, A.N., Sergievskaia, E.M.: Theory of Metallurgical Processes: Pyrometallurgical Processes, 2nd edn. MIR Publishers, Moscow (1971)

    Google Scholar 

  • Wang, S.D., Li, Q., Ye, X.S., Sun, Q.G., Wu, Z.J.: Trans. Nonferrous Metals Soc. China (English Ed.) 23, 3104–3111 (2013)

    Google Scholar 

  • WS: Materials Performance Indices (2008)

    Google Scholar 

  • Yan, X.Y., Fray, D.J.: Molten salt electrolysis for sustainable metals extraction and materials processing—a review. In Electrolysis: Theory, Types Appl., pp. 46–49. Nova Science Publishers (2008)

    Google Scholar 

  • Yan, X.Y., Fray, D.J.: Molten salt electrolysis for sustainable metals extraction and materials processing—a review. In: Electrolysis: Theory, Types and Applications, pp. 255–301. Nova Science Publishers, Inc. (2010)

    Google Scholar 

  • Yan, Q.X., Li, X.H., Wang, Z.X., Wang, J.X., Guo, H.J., Hu, Q.Y., Peng, W.J., Wu, X.F.: Trans. Nonferrous Metals Soc. China (English Ed.) 22, 1753–1759 (2012)

    Google Scholar 

  • Yasuda, K., Kondo, K., Nohira, T., Hagiwara, R.: J. Electrochem. Soc. 161, D3097–D3104 (2014)

    Article  CAS  Google Scholar 

  • Zaikov, Y.P., Shurov, N.I., Batukhtin, V.P., Molostov, O.G.: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 45, 968–974 (2014a)

    Google Scholar 

  • Zaikov, Y.P., Batukhtin, V.P., Shurov, N.I., Ivanovskii, L.E., Suzdaltsev, A.V.: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 45, 961–967 (2014b)

    Google Scholar 

  • Zhu, H.: Rare earth metal production by molten salt electrolysis. In: Encyclopedia of Applied Electrochemistry. Springer, New York (2014)

    Google Scholar 

Download references

Acknowledgements

The financial support by IRELTDC via GAP 40/19 (M.J., R.S.P.) SERB-ECR via Project No. ECR/2018/002075 (M.J.). CSIR-TWAS Postgraduate Fellowship via Award No. 22/FF/CSIR-TWAS/2017 (C.A.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Jayakumar or Naveen Chandrasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayakumar, M. et al. (2024). Molten Salt Electrowinning of Metals and Materials: Opportunities and Challenges. In: Divakar, R., Murty, S.V.S.N., Srikanth, S., Gokhale, A.A. (eds) Indian Metallurgy. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-5060-7_11

Download citation

Publish with us

Policies and ethics