Skip to main content

Role of the central nervous system in processing pain stimuli and perspectives of pharmacological intervention

  • Chapter
Regional Anaesthesia Analgesia and Pain Management

Abstract

Pain, perceivable through conscious integration of nociceptive stimuli, is classified into somatic pain, characterized by intense and localized sharp sensation, and visceral pain, characterized by diffuse, deep and slow–in–onset painful sensation. Based on the current knowledge, the proposal of the existence of a single central pain centre has to be rejected due to the complexity of the systems that modulate pain transmission. It is worth considering that each cerebral area perceives as pain signals received from alterations in the peripheral region on which it exerts its own control (objective sensation). Moreover, affective and emotional components play an important role in pain perception (subjective sensation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Melzack R, Wall PD (1965) Pain mechanism: a new theory. Science 150: 971–979

    Article  PubMed  CAS  Google Scholar 

  2. Dubuisson D, Wall PD (1980) Descending influence of receptive fields and activity of single units in laminae I, II, III of cat spinal cord. Brain Res 199: 283–298

    Article  PubMed  CAS  Google Scholar 

  3. Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Ann Rev Neurosci 14: 219–245

    Article  PubMed  CAS  Google Scholar 

  4. Basbaum AI, Fields H (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7: 309–338

    Article  PubMed  CAS  Google Scholar 

  5. Gebhart GF (1982) Opiate and opiod effects on brain stem neurons: relevance to nociception and antinociception mechanism. Pain 12: 93–140

    Article  PubMed  CAS  Google Scholar 

  6. Fields HL, Anderson SD (1978) Evidence that raphe-spinal neurons mediate opiate and midbram stimulation produced analgesia. Pain 5: 333–349

    Article  PubMed  CAS  Google Scholar 

  7. Jessel TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus Nature 268: 549–551

    Google Scholar 

  8. Pernow B (1984) Substance P. Pharmacol Rev 35: 86–114

    Google Scholar 

  9. Hosobuchi Y, Emson PC, Iversen LL (1982) Elevated cerebrospinal fluid substance Pin arachnoiditis is reduced by systemic administration of morphine Biochem Psychopharmacol 33: 497–500

    CAS  Google Scholar 

  10. Tang J, Chou J, Yang HYT, Costa E (1983) Substance P stimulates the release of met5enkephalm-Arg6-Phe7 and met5-enkephalin from rat spinal cord. Neuropharmacology 22: 1147–1150

    Article  PubMed  CAS  Google Scholar 

  11. Faccini E, Uzumaki H, Govoni S, Missale C, Spano PF, Covelli V, Trabucchi M (1984) Afferent fibers mediate the increase of met-enkephalin elicited in rat spinal cord by localized pain. Pain 18: 25–31

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto T (1996) N-methyl-D-aspartate (NMDA) receptor and pain. Masui 45: 1312–1318

    PubMed  CAS  Google Scholar 

  13. Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386. 721–724

    Article  PubMed  CAS  Google Scholar 

  14. Dickenson AH (1997) NMDA receptor antagonists. interaction with opiods. Acta Anaesthesiol Scan 41: 112–115

    Article  CAS  Google Scholar 

  15. Harris JA, Corsi M, Quartaroli M, Arban R, Bentivoglio M (1996) Upregulation of spinal glutamate receptors in chronic pain. Neuroscience 74: 7–12

    Article  PubMed  CAS  Google Scholar 

  16. Zakusov VV, Ostrovskaya RU, Bulayev VM (1983) GABA-opiates interactions in the activity of analgesics. Arch Int Pharmacodyn Ther 265: 61–75

    PubMed  CAS  Google Scholar 

  17. Simon EJ (1991) Opiod receptors and endogenous opiod peptides. Med Res Rev 11: 257–274

    Article  Google Scholar 

  18. Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 88: 295

    Article  PubMed  CAS  Google Scholar 

  19. Weihe E, Millau MJ, Leibold A, Nohr D, Herz A (1988) Co-localization of proenkephalin-and prodynorphm-derived opioid peptides in laminae IV/V spinal neurons revealed in arthritics rats. Neurosci Lett 29: 187–192

    Article  Google Scholar 

  20. Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meurs M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383: 819–823

    Article  PubMed  CAS  Google Scholar 

  21. Panz ZZ, Tershner SA, Fields HL (1997) Cellular mechanism for anti-analgesic action of agonists of the kappa-opiod receptor. Nature 389: 382–385

    Article  Google Scholar 

  22. Evans C, Keith D, Morrison H, Magendzo K, Edwards R (1992) Cloning of delta opiod receptor by functional expression. Science 258: 1952–1955

    Article  PubMed  CAS  Google Scholar 

  23. Reisine T, Brownstein MJ (1994) Opiod and cannabinoid receptors. Curr open in Neurobiol 4: 406–412

    Article  CAS  Google Scholar 

  24. Herz A (1993) Opioids I. Handbook of experimental pharmacology. Springer-Verlag, Berlin Heidelberg New York, p 104

    Google Scholar 

  25. Collin E, Cesselin F (1991) Neurobiological mechanisms of opioid tolerance and dependence. Clin Neuropharmacol 14. 465–488

    Article  PubMed  CAS  Google Scholar 

  26. Liaw WJ, Ho ST, Wang JJ, Wong CS, Lee HK (1996) Cellular mechanism of opioid tolerance. Acta Anaesthesiol Sin 34: 221–234

    Google Scholar 

  27. Aceto MD, Dewey WL, Portoghese PS, Takemori AE (1986) Effects of 13-funaltrexamme on morphine dependence in rats and monkeys. Eur J Pharmacol 123: 387–393

    Article  PubMed  CAS  Google Scholar 

  28. Alexander SPH, Peters JA (1998) Receptor and ion channel nomenclature. Trends Pharmacol Sci (Suppl 9 ): 58–59

    Google Scholar 

  29. Baamonde A, Dauge V, Gacel G, Roques BP (1991) Systemic administration of Tyr-DSer(O-tert-butyl)-Gly-Phe-Leu-Thr(O-tert-butyl), a highly selective delta opioid agonist, induces mu receptor-mediated analgesia in mice. J Pharmacol Exp Ther 257: 767–773

    PubMed  CAS  Google Scholar 

  30. Eisenberg RM (1993) DAMGO stimulates the hypothalamo-pituitary-adrenal axis through a mue opiod receptor. J Pharmacol Exp Ther 266: 985–991

    PubMed  CAS  Google Scholar 

  31. Ho J, Mannes AJ, Dubner R, Caudle RM (1997) Putative kappa2 opioid agonists are antihyperalgesic in a rat model of inflammation. J Pharmacol Exp Ther 281. 136–141

    PubMed  CAS  Google Scholar 

  32. Maldonado R, Negus S, Koob GF (1992) Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta-and kappa-selective opioid antagonists. Neuropharmacology 31. 1231–1241

    Article  PubMed  CAS  Google Scholar 

  33. Menkens K, Bilsky EJ, Wild KD, Portoghese PS, Reid LD, Porreca F (1992) Cocaine place preference is blocked by the delta-opioid receptor antagonist, naltrindole. Eur J Pharmacol 219: 345–346

    Article  PubMed  CAS  Google Scholar 

  34. Noble F, Cox BM (1996) Differences among mouse strains in the regulation by mu, delta1 and delta2 opioid receptors of striatal adenylyl cyclases activated by dopamine D1 or adenosine A2A receptors. Brain Res 716: 107–117

    Article  PubMed  CAS  Google Scholar 

  35. Raynor K, Kong H, Mestek A, Bye LS, Tian M, Liu J, Yu L, Reisine T (1995) Characterization of the cloned human µ opioid receptor. J Pharmacol Exp Ther 272: 423–428

    PubMed  CAS  Google Scholar 

  36. Simonin F, Befort K, Gaveriaux-Ruff C, Matthes H, Nappey V, Lannes B, Micheletti G, Kieffer B (1994) The human delta opiod receptor: genomic organization, cDNA cloning, functional expression, and distribution in human brain. Mol Pharmacol 46.1015–1021

    Google Scholar 

  37. Sofuoglu M, Portoghese PS, Takemori AE (1992) Maintenance of acute morphine tolerance in mice by selective blockage of kappa opioid receptors with norbinaltorphimine. Eur J Pharmacol 210: 159–162

    Article  PubMed  CAS  Google Scholar 

  38. Takemory AE, Portoghese PS (1993) Enkephalin antinociception in mice is mediated by delta 1- and delta 2-opioid receptors in the brain and in spinal cord, respectively. Eur J Pharmacol 242: 145–150

    Article  Google Scholar 

  39. Ward SJ, Portoghese PS, Takemori AE (1982) Improved assays for the assessment of kappa-and delta-properties of opioid ligands. Eur J Pharmacol 85: 163–170

    Article  PubMed  CAS  Google Scholar 

  40. Levy MH (1996) Pharmacologic treatment of cancer pain. New Engl J Med 335: 1124–1132

    Article  PubMed  CAS  Google Scholar 

  41. Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or Substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257: 1276–1279

    Article  PubMed  CAS  Google Scholar 

  42. Brasseur L (1997) Revue des thérapeutiques pharmacologiques actuelles de la doleur. Drugs 53 (Suppl 2): 10–17

    Article  PubMed  CAS  Google Scholar 

  43. Dray A, Urban L, Dickenson A (1994) Pharmacology of chronic pain. Trends Pharmacol Sci 15: 190–197

    Article  PubMed  CAS  Google Scholar 

  44. Fusco BM, Giacovazzo M (1997) Peppers and pain, the promise of capsaicin. Drugs 53: 909–914

    Article  PubMed  CAS  Google Scholar 

  45. Hua HY, Chen P, Hwang J, Yaksh TL (1997) Antinociception induced by civamidine, an orally active capsaicin analogue. Pain 71: 313–322

    Article  PubMed  CAS  Google Scholar 

  46. Wiesenfeld-Hallin Z (1998) Combined opioid-NMDA antagonist therapies. Drugs 55: 1–4

    Article  PubMed  CAS  Google Scholar 

  47. Lehmann KA (1997) Tramadol in acute pain. Drugs 53 (Suppl 2): 25–33

    Article  PubMed  Google Scholar 

  48. Lewis KS, Han NH (1997) Tramadol: a new centrally acting analgesic. Am J Health Sys Pharm 54: 643–652

    CAS  Google Scholar 

  49. Raffa RB, Nayak RK, Liao S, Minn FL (1995) The mechanism(s) of action and pharmacokinetics of tramadol hydrochloride. Rev Contemp Pharmacother 6: 485–497

    CAS  Google Scholar 

  50. Raffa RB, Friderichs E (1996) The basic science aspect of tramadol hydrochloride. Pain Rev 3: 249–271

    CAS  Google Scholar 

  51. Raffa RB (1996) A novel approach to the pharmacology of analgesics. Am J Med 101. 40S - 46S

    PubMed  CAS  Google Scholar 

  52. Dray A, Urban L (1996) New pharmacological strategies for pain relief. Ann Rev Pharmacol Toxicol 36. 253–280

    Article  CAS  Google Scholar 

  53. Donner B, Zenz M, Tryba M, Strumpf M (1996) Direct conversion from oral morphine to transdermal fentanyl• a multicenter study in patients with cancer pain Pain 64. 527–534

    CAS  Google Scholar 

  54. Lesser GJ, Grossman SA, Leong KW, Lo H, Eller S (1996) In vitro and in vivo studies of subcutaneous hydromorphone implants designed for treatment of cancer pain. Pain 65. 265–272

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Verlag Italia, Milano

About this chapter

Cite this chapter

Masoero, E., Favalli, L., Govoni, S. (1999). Role of the central nervous system in processing pain stimuli and perspectives of pharmacological intervention. In: Tiengo, M., Paladini, V.A., Rawal, N. (eds) Regional Anaesthesia Analgesia and Pain Management. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2240-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2240-9_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0044-5

  • Online ISBN: 978-88-470-2240-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics