Skip to main content

Integrated axon-synapse unit in the central nervous system

  • Chapter
Regional Anaesthesia Analgesia and Pain Management

Abstract

One of the most daunting questions in developmental neurobiology concerns the mechanisms which allow cohorts of neurons to develop the intricate, yet stereotypic pattern of connections in the adult nervous system: it has been estimated that 1011 neurons of human brain establish a network of 1014 synaptic contacts. We must consider, however, that most neurons are generally grouped into classes with a characteristic pattern of connectivity and this mere fact allows the wiring of complex neural networks to be controlled by the reiteration and diversification of a relatively small number of prototypic connection patterns. On the other hand, it is a matter of fact that axon projection to the corresponding targets, which is a key element in the assembly of the nervous system, links the early inductive interactions that establish neuronal identity to the later steps of synapse formation. It is worth remembering that in the last decade it has been demonstrated that the exocytic trafficking system, which is the heart of the synaptic machinery, represents one of the most fascinating examples of conservation of a complex biological system throughout evolution, from yeast to vertebrates [1]. Neurons extend axons and dendrites through an outstanding variety of environments using a specialized structure which each of them has at its end, the growth cone [2, 3]. Growth cones detect and respond to information from their immediate environment by extending filopodia and lamellae that are endowed with a panoplia of receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferro-Novick S, Jahn R (1994) The molecular machinery of secretion is conserved from yeast to neurons. Proc Natl Acad Sci 90: 2559–2563

    Google Scholar 

  2. Tessier-Lavigne M, Goodman CS (1996) The molecular mechanisms of axon guidance. Science 274: 1123–1133

    Article  PubMed  CAS  Google Scholar 

  3. Stoeckli ET, Lendmesser LT (1998) Axon guidance at choice points. Curr Opin Neurobiol 8: 73–79

    Article  PubMed  CAS  Google Scholar 

  4. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8: 1454–1468

    PubMed  CAS  Google Scholar 

  5. Bradke F, Dotti CG (1997) Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19: 1175–1186

    Article  PubMed  CAS  Google Scholar 

  6. Higgins D, Burack M, Lein P, Banker G (1997) Mechanisms of neuronal polarity. Curr Opin Neurobiol 7: 599–604

    Article  PubMed  CAS  Google Scholar 

  7. Eaton S, Simons K (1995) Apical, basal, and lateral cues for epithelial polarization. Cell 82: 5–8

    Article  PubMed  CAS  Google Scholar 

  8. Ehlers MD, Mammen AL, Lau LF, Huganir RL (1996) Synaptic targeting of glutamate receptors. Curr Biol 8: 484–489

    CAS  Google Scholar 

  9. Tienan PJ, De Strooper B, Ikonen E, Simons M, Weidemann A, Czech C, Hartman T, Ida N, Multhaup G, Masters GL, Masters CL, van Leuven F, Beyreuther K, Dotti CG (1996) The 13-amyloid domain is essential for axonal sorting of amyloid precursor protein. EMBO J 15: 5218–5229

    Google Scholar 

  10. Jareb M, Banker G (1998) The polarized sorting of membrane proteins expressed in culture hippocampal neurons using viral vectors. Neuron 20: 855–867

    Article  PubMed  CAS  Google Scholar 

  11. Lewin GR, Barde YA (1996) The physiology of neurotrophins. Annu Rev Neurosci 19: 289–317

    Article  PubMed  CAS  Google Scholar 

  12. Cabelh RJ, Hohn A, Shatz CJ (1995) Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267: 1662–1666

    Article  Google Scholar 

  13. Cabelli RJ, Shelton DL, Segal R, Shatz CJ (1997) Blockade of endogenous ligands of TrkB inhibits formation of ocular dominance columns. Neuron 19: 63–75

    Article  PubMed  CAS  Google Scholar 

  14. Brummendorf T, Rathjen FG (1995) Cell adhesion molecules 1: immunoglobulin superfamily. Protein Profile 2: 963–1108

    PubMed  CAS  Google Scholar 

  15. Walsh FS, Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin superfamily. Annu Rev Cell Biol 13: 425–456

    Article  CAS  Google Scholar 

  16. Pesheva P, Gennarini G, Goridis C, Schachner M (1993) The F3/11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1160/180. Neuron 10: 69–82

    Article  PubMed  CAS  Google Scholar 

  17. Norenberg U, Hubert M, Brummendorf T, Tarnok A, Rathjen FG (1995) Characterization of functional domains of the tenascin-R (restrictin) polypeptide-cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R. J Cell Biol 130: 473–484

    Article  PubMed  CAS  Google Scholar 

  18. Wong EV, Kenwrick S, Willelms P, Lemmon V (1995) Mutations in the cell adhesion molecule L1 cause mental retardation. Trends Neurosci 18: 168–172

    Article  PubMed  CAS  Google Scholar 

  19. Cohen NR, Taylor JSH, Scott LB, Guillery RW, Soriano P, Furley AJW (1998) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule Ll Curr Biol 8 26–33

    CAS  Google Scholar 

  20. Walsh FS, Doherty P (1991) Structure and function of the gene for neural cell adhesion molecule Semin Neurosci 3: 271–284

    Google Scholar 

  21. Walsh FS, Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin superfamily. Annu Rev Cell Dev Biol 13. 425–456

    Article  PubMed  CAS  Google Scholar 

  22. Kiss JZ, Rougon G (1997) Cell biology of polysialic acid Curr. Opin Neurobiol 7: 640–646

    Article  PubMed  CAS  Google Scholar 

  23. Doherty P, Walsh FS (1994) Signal transduction events underlying neunte outgrowth stimulated by cell adhesion molecules. Curr Opin Neurobiol 4: 49–55

    Article  PubMed  CAS  Google Scholar 

  24. Doherty P, Walsh FS (1996) CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8: 99–111

    Article  CAS  Google Scholar 

  25. Brittis PA, Silver J, Walsh FS, Doherty P (1996) FGF receptor function is required for the orderly projection of ganglion cell axons in the developing mammalian retina. Mol Cell Neurosci 8: 120–128

    Article  CAS  Google Scholar 

  26. Saffell JL, Williams EJ, Mason IJ, Walsh FS, Doherty P (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18: 232–242

    Article  Google Scholar 

  27. Eph Nomenclature Committee (1997) Unified nomenclature for Eph family receptors and their ligands. Cell 90: 403–404

    Article  Google Scholar 

  28. Holland SJ, Peles E, Pawson T, Schlessinger J (1998) Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase (3. Curr Opin Neurobiol 8: 117–127

    Article  PubMed  CAS  Google Scholar 

  29. Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartimentalized during embryogenesis Neuron 17: 9–19

    CAS  Google Scholar 

  30. Kolodkm AL, Ginty DD (1997) Steering clear of semaphorms: neuropilins sound the retreat. Neuron 19: 1159–1162

    Article  Google Scholar 

  31. Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, Yagi T, Fujisawa H (1997) Neurophilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19.995–1005

    Google Scholar 

  32. Carlson SS, Hockfield S (1996) Central nervous system. In: Comper WD (ed) Tissue Function. Extracellular matrix. Vol I. Harwood Academic, Amsterdam, pp 1–23

    Google Scholar 

  33. Small DH, San Mok S, Williamson TG, Nurcombe V (1996) Role of proteoglycans in neural development, regeneration, and the aging brain. J Neurochem 67: 889–899

    Article  PubMed  CAS  Google Scholar 

  34. Cestelli A, Savettieri G, Salemi G, Di Liegro I (1992) Neuronal cell cultures: a tool for investigations in developmental neurobiology. Neurochem Res 17: 1163–1180

    Article  PubMed  CAS  Google Scholar 

  35. Cohen J, Burne JF, McKinlay C, Winter J (1987) The role of laminin and the laminin/fibronectin receptor complex in the outgrowth of retinal ganglion cell axons. Dev Biol 122: 407–418

    Article  PubMed  CAS  Google Scholar 

  36. Savettieri G, Mazzola GA, Rodriguez Sanchez MB, Caruso G, Di Liegro I, Cestelli A (1998) Modulation of synapsm I gene expression in rat cortical neurons by extracellular matrix. Cell Mol Neurobiol 18: 369–378

    Article  PubMed  CAS  Google Scholar 

  37. Faissner A, Kruse J (1990) J 1/tenascin is a repulsive substrate for central nervous system neurons. Neuron 5: 627–637

    CAS  Google Scholar 

  38. Cook G, Tannahill D, Keynes R (1998) Axon guidance to and from choice points. Curr Op Neurobiol 8: 64–72

    Article  PubMed  CAS  Google Scholar 

  39. Savettieri G, Cestelli A, Di Liegro I (1996) Biochemistry of neurotransmission: an update. In: Gullo A (ed) Anaesthesia, pain, intensive care and emergency medicine. Springer-Verlag, Berlin Heidelberg New York, pp 43–73

    Google Scholar 

  40. TolkoskyA (1997) Neurotrophic factors in action. Trends Neurosci 20: 1–3

    Article  Google Scholar 

  41. Schimmang T, Represa J (1997) Neurotrophins gain a hearing. Trends Neurosci 20: 100–102

    Article  PubMed  CAS  Google Scholar 

  42. Marty S, da Penha Berzaghi M, Berninger B (1997) Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci 20: 198–202

    Article  PubMed  CAS  Google Scholar 

  43. Bredesen DE, Rabizadeh S (1997) p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci 20: 287–290

    Article  PubMed  CAS  Google Scholar 

  44. Carter BD, Lewin GR (1997) Neurotrophins lie or let die: does p75NTR decide? Neuron 18: 187–190

    Article  PubMed  CAS  Google Scholar 

  45. Bergeron L, Yuan J (1998) Sealing one’s fate: control of cell death in neurons. Curr Opin Neurobiol 8: 55–63

    Article  PubMed  CAS  Google Scholar 

  46. Chao MV (1994) The p75 neurotrophin receptor. J Neurobiol 25: 1373–1385

    Article  PubMed  CAS  Google Scholar 

  47. Frade JM, Rodriguez-Tebar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor. Nature 383: 166–168

    Article  PubMed  CAS  Google Scholar 

  48. Casaccia-Bonnefil P, Carter BD, Dobrovsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383: 716–719

    Article  PubMed  CAS  Google Scholar 

  49. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA (1994) Activation of the sphingomyelin cycle through the low affinity neurotrophin receptor. Science 265: 1596–1599

    Article  PubMed  CAS  Google Scholar 

  50. Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA (1996) Selective activation of NF-kB by nerve growth factor through the neurotrophin receptor p75. Science 272: 542–545

    Article  PubMed  CAS  Google Scholar 

  51. Phipott KL, McCarthy MJ, Kippel A, Rubin LL (1997) Activated phosphatidyl inositol 3-kinase promote surival of superior cervical neurons. J Cell Biol 139: 809–815

    Article  Google Scholar 

  52. O’Neill LAJ, Kaltschmidt C (1997) NK-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20: 252–258

    Article  PubMed  Google Scholar 

  53. Kaltschmidt C, Kaltschmidt B, Baeuerle PA (1993) Brain synapses contain inducible forms of the transcription factor NF-kB. Mech Dev 43: 135–147

    Article  PubMed  CAS  Google Scholar 

  54. Meberg PJ, Kiney WR, Valcourt EG, Ruttenberg A (1996) Gene expression of the transcription factor NF-KB in hyppocampus: regulation by synaptic activity. Mol Brain Res 38: 179–190

    Article  PubMed  CAS  Google Scholar 

  55. Blaustein JD, Lehman MN, Turcotte JC, Greene G (1992) Estrogen receptors in dendrites and axon terminals in the guinea pig hypothalamus. Endocrinology 131: 281–290

    Article  PubMed  CAS  Google Scholar 

  56. Suter DM, Forscher P (1998) An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance. Curr Opin Neurobiol 8: 106–116

    Article  PubMed  CAS  Google Scholar 

  57. Welch MD, Mallavarapu A, Rosenblatt J, Mitchison TJ (1997) Actin dynamics in vivo. Curr Opin Cell Biol 9: 54–61

    Article  PubMed  CAS  Google Scholar 

  58. Titus MA (1997) Unconventional myosins: new frontiers in actin-based motors. Trends Cell Biol 7: 119–123

    Article  PubMed  CAS  Google Scholar 

  59. Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279: 527–533

    Article  PubMed  CAS  Google Scholar 

  60. Carlier MF (1998) Control of actin dynamics. Curr Opin Cell Biol 10: 45–51

    Article  PubMed  CAS  Google Scholar 

  61. Ayscough KR (1998) In vivo functions of actin-binding proteins. Curr Opin Cell Biol 10: 102–111

    Article  PubMed  CAS  Google Scholar 

  62. Welch MD, Iwamatsu A, Mitchison TJ (1997) Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes. Nature 385: 265–269

    Article  PubMed  CAS  Google Scholar 

  63. Bray D (1997) The riddle of slow transport-an introduction. Trends Cell Biol 7: 379

    Article  PubMed  CAS  Google Scholar 

  64. Baas PW, Brown A (1997) Slow axonal transport• the polymer transport model. Trends Cell Biol 7. 380–384

    Article  PubMed  CAS  Google Scholar 

  65. Hirokawa N, Terada S, Funakoshi T, Takeda S (1997) Slow axonal transport: the subunit transport model Trends Cell Biol 7: 384–388

    CAS  Google Scholar 

  66. Heidemann SR (1996) Cytoplasmic mechanisms of axonal and dendritic growth in neurons Int Rev Cytol 165: 235–296

    CAS  Google Scholar 

  67. Delacourte A, Buée L (1997) Normal and pathological Tau proteins as factors for microtubule assembly Int Rev Cytol 171 167–224

    CAS  Google Scholar 

  68. Cunningham CC, Leclerc N, Flanagan LA, Janmey PA, Kosik KS (1997) Microtubule-associated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line. J Cell Biol 136. 845–857

    Article  PubMed  CAS  Google Scholar 

  69. Hirokawa N, Noda Y, Okada Y (1998) Kinesin and dynem superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10: 60–73

    Article  PubMed  CAS  Google Scholar 

  70. Hirokawa N (1998) Kinesin and dynem superfamily proteins and the mechanism of organelle transport. Science 279: 519–526

    Article  PubMed  CAS  Google Scholar 

  71. Houseweart MK, Cleveland DW (1998) Intermediate filaments and their associated proteins: multiple dynamic personalities. Curr Opin Cell Biol 10: 93–101

    Article  PubMed  CAS  Google Scholar 

  72. Yang Y, Dowling J, Yu QC, Kouklis P, Cleveland DW (1996) An essential cytoskeletal protein connecting actin microfilaments to intermediate filaments. Cell 86: 655–665

    Article  PubMed  CAS  Google Scholar 

  73. Nixon RA (1998) The slow axonal transport of cytoskeletal proteins. Curr Opin Cell Biol 10: 87–92

    Article  PubMed  CAS  Google Scholar 

  74. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514

    Article  PubMed  CAS  Google Scholar 

  75. Schlaepfer DD, Hunter T (1998) Integrin signalling and tyrosine phosphorylation: lust the FAKs? Trends Cell Biol 8: 151–157

    Article  PubMed  CAS  Google Scholar 

  76. Howe A, Aplin AE, Alahari SK, Juliano RL (1998) Integren signaling and cell growth control. Curr Opin Cell Biol 10: 220–231

    Article  PubMed  CAS  Google Scholar 

  77. Gebbink MF, Kranenburg O, Poland, M, van Horck FP, Houssa B, Moolenaar WH (1997) Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein• control of neuronal morphology. J Cell Biol 137. 1603–1613

    Article  PubMed  CAS  Google Scholar 

  78. Bito H, Deisseroth K, Tsien RW (1997) Ca++-dependent regulation in neuronal gene expression Curr Opin Neurobiol 7: 419–429

    CAS  Google Scholar 

  79. Mikoshiba K (1997) The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol 7: 339–345

    Article  PubMed  CAS  Google Scholar 

  80. Holland SJ, Gale NW, Gish GD, Roth RA, Songyang Z, Cantley LC, Henkemeyer M, Yancopoulos GD, Pawson T (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells EMBO J 16: 3877–3888

    CAS  Google Scholar 

  81. Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20: 84–91

    Article  PubMed  CAS  Google Scholar 

  82. Gallo G, Letourneau PC (1998) Axon guidance: GTPases help axons reach their targets Curr Bio18:R80–R82

    Google Scholar 

  83. Brosamle C (1998) The making, changing, and breaking of contacts. Trends Neurosci 21: 91–94

    Article  PubMed  CAS  Google Scholar 

  84. Sheperd GM, Erulkar SD (1997) Centenary of the synapse: from Sherrington to the molecular biology of the synapse and beyond Trends Neurosci 20: 385–392

    Google Scholar 

  85. Changeux JP (1997) Letter to the editor. Trends Neuroses 7: 291–293

    Google Scholar 

  86. Purves D, White L, Riddle D (1997) Letter to the editor. Trends Neuroses 7: 293

    Google Scholar 

  87. Davis GW, Goodman CS (1998) Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr Opin Neurobiol 8. 149–156

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Verlag Italia, Milano

About this chapter

Cite this chapter

Cestelli, A., Savettieri, G., Di Liegro, I. (1999). Integrated axon-synapse unit in the central nervous system. In: Tiengo, M., Paladini, V.A., Rawal, N. (eds) Regional Anaesthesia Analgesia and Pain Management. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2240-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2240-9_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0044-5

  • Online ISBN: 978-88-470-2240-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics