Skip to main content

Plant Automation for Energy-Efficient Mineral Processing

  • Chapter
  • First Online:
Energy Efficiency in the Minerals Industry

Abstract

Mineral processing is one of the most energy-intensive stages of the overall mining beneficiation chain, with an increasing share of the industry footprint. This chapter examines how automation represents a practical means to significantly improve energy efficiency in mineral processing operations. It introduces the fundamentals of automation, hierarchical framework of automation systems, and how the multiple functions can be integrated into an energy management information system. The discussion also explains the rationale of process control and real-time optimization approaches that facilitates lower specific energy requirements from lower variability of key process variables, and determining more appropriate operating points. Case studies are presented to illustrate the current state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tromans D (2008) Mineral comminution: energy efficiency considerations. Miner Eng 21:613–620

    Article  Google Scholar 

  2. CEEC (2013) Innovation—mining more for less. http://www.ceecthefuture.org/comminution-2/innovation-mining-less/, 2013

  3. Norgate T, Haque N (2010) Energy and greenhouse gas impacts of mining and mineral processing operations. J Clean Prod 18:266–274

    Article  Google Scholar 

  4. U.S. Department of Energy (2007) Mining industry energy bandwidth study. http://www.energy.gov/sites/prod/files/2013/11/f4/mining_bandwidth.pdf, 2007

  5. Wei D, Craig IK (2009) Grinding mill circuits—a survey of control and economic concerns. Int J Miner Process 90:56–66

    Article  Google Scholar 

  6. Kanchibotla SS, Valery W, Morrell S (1999) Modelling fines in blast fragmentation and its impact on crushing and grinding. Presented at the Explo ‘99–A conference on rock breaking, Kalgoorlie, Australia, 1999

    Google Scholar 

  7. Torrealba-Vargas J, Esteban R, Roy D, Runnels D (2016) Mine to mill approach to optimize power consumption in a process plant operation by modelling and simulation. In: International mineral processing congress—IMPC 2016, Quebec City, 2016

    Google Scholar 

  8. Morrell S (2009) Predicting the overall specific energy requirement of crushing, high pressure grinding roll and tumbling mill circuits. Miner Eng 22:544–549

    Article  Google Scholar 

  9. Van Der Meer FP, Gruendken A (2010) Flowsheet considerations for optimal use of high pressure grinding rolls. Miner Eng 23:663–669

    Article  Google Scholar 

  10. Nordell LK, Porter B, Potapor A (2016) Comminution energy efficiency—understanding the next steps. In: IMPC 2016, Quebec City, 2016

    Google Scholar 

  11. Lessard J, De Bakker J, McHugh L (2014) Development of ore sorting and its impact on mineral processing economics. Miner Eng 65:88–97

    Article  Google Scholar 

  12. Awatey B, Skinner W, Zanin M (2015) Incorporating fluidised-bed flotation into a conventional flotation flowsheet: a focus on energy implications of coarse particle recovery. In: Powder technology, vol 275, pp 85–93, May 2015

    Google Scholar 

  13. Tbaybi H (2015) Impact de la flottation éclair sur l’empreinte énergétique d’un circuit de broyage – Cas de la mine Nyrstar – Langlois. M.Sc., Département de génie des mines, de la métallurgie et des matériaux, Université Laval, 2015

    Google Scholar 

  14. Silva DO, Vieira LGM, Lobato FS, Barrozo MAS (2012) Optimization of the design and performance of hydrocyclones by differential evolution technique. Chem Eng Process 61:1–7

    Article  Google Scholar 

  15. Radziszewski P (2013) Energy recovery potential in comminution processes. Miner Eng 46–47:83–88

    Article  Google Scholar 

  16. Radziszewski P, Hewitt D (2015) Exploring the effect of energy recovery potential on comminution efficiency: the Glencore Raglan Mine case. In: SAG conference 2015, Vancouver, British Columbia, Canada, 2015

    Google Scholar 

  17. Bouchard J, LeBlanc G, Germain Y, Levesque M, Tremblay N, Légaré B, Dallaire B, Radziszewski P (2016) The CMIC/CanmetMINES comminution energy recovery potential initiative—The Agnico Eagle Goldex Division Case. In: International mineral processing congress—IMPC 2016, Quebec City, 2016

    Google Scholar 

  18. Levesque MY, Millar DL (2015) The link between operational practices and specific energy consumption in metal ore milling plants—Ontario experiences. In: Minerals engineering, vol 71, pp 146–158, Feb 2015

    Google Scholar 

  19. Nunez E, MacPherson G, Graffi D, Tuzun A (2009) Self-optimizing grinding control for maximising throughput while maintaining cyclone overflow specifications. In: 41st Annual meeting of the Canadian mineral processors, Ottawa, Canada, 2009, pp 541–555

    Google Scholar 

  20. Engell S, Harjunkoski I (2012) Optimal operation: scheduling, advanced control and their integration. Comput Chem Eng 47:121–133

    Google Scholar 

  21. Bonavita N (2013) Can process automation increase energy efficiency? Hydrocarbon Process 92:71–75

    Google Scholar 

  22. Sbarbaro D, del Villar R (2010) Introduction. In Sbarbaro D, del Villar R (eds) Advanced control and supervision of mineral processing plants. Springer, Berlin

    Google Scholar 

  23. Bascur O, Dunne R, Karageorgos J, Ruel M, Sbarbaro D (2016) Process control, optimization and performance management in mineral and metallurgical processing. In: Young C, Dunne R (eds) SME Process control handbook

    Google Scholar 

  24. Byron JHH, Landry J, Hart D (2003) Energy management information systems: achieving improved energy efficiency: a handbook for managers, engineers and operational staff. Office of Energy Efficiency of Natural Resources Canada, 2003

    Google Scholar 

  25. Efficiency New Brunswick (2010) Energy management information systems: planning manual and tool. Office of Energy Efficiency of Natural Resources Canada, 2010

    Google Scholar 

  26. Seshan A, Gorain BK (2016) An integrated mining and metallurgical enterprise enabling continuous process optimization. In: Lakshmanan VI, Roy R, Ramachandran V (eds) Innovative process development in metallurgical industry. Springer, Berlin

    Google Scholar 

  27. Friedmann PG (2006) Automation and control systems economics, 2nd edn. ISA Press

    Google Scholar 

  28. Tanaka K (2008) Assessment of energy efficiency performance measures in industry and their application for policy. Energy Policy 36:2877–2892

    Google Scholar 

  29. White DC (2003) The economics of advanced automation. In: AIChE 2003 spring meeting, New Orleans, 2003

    Google Scholar 

  30. Funk GL, Smith DE (1979) Estimating economic incentives for computer control systems: an applications approach. IEEE Trans Ind Appl IA-15:394–398

    Google Scholar 

  31. Hodouin D, Jamsa-Jounela SL, Carvalho MT, Bergh L (2001) State of the art and challenges in mineral processing control. Control Eng Pract 9:995–1005

    Article  Google Scholar 

  32. Wei D, Craig IK (2009) Economic performance assessment of two ROM ore milling circuit controllers. Miner Eng 22:826–839

    Article  Google Scholar 

  33. Desbiens A, Nunez E, del Villar R, Hodouin D, Poulin E (2008) Using process control to increase the energy efficiency of mineral and metal processing plants. Int J Power Energy Syst 28:145–152

    Google Scholar 

  34. Numbi BP, Xia X (2015) Systems optimization model for energy management of a parallel HPGR crushing process. Appl Energy 149:133–147

    Google Scholar 

  35. Numbi BP, Zhang J, Xia X (2014) Optimal energy management for a jaw crushing process in deep mines. Energy 68:337–348

    Google Scholar 

  36. Numbi BP, Xia X (2016) Optimal energy control of a crushing process based on vertical shaft impactor. Appl Energy 162:1653–1661

    Google Scholar 

  37. Nunez E (2002) Filosofía de control para molienda y clasificación en la planta concentradora de Toquepala y diseño de una estrategia de control utilizando DCS. Bachelor, Universidad Católica de Santa María, Arequipa, Perú, 2002

    Google Scholar 

  38. Matthews B, Craig IK (2013) Demand side management of a run-of-mine ore milling circuit. Control Eng Pract 21:759–768

    Google Scholar 

  39. Rinne A, Peltola A (2008) On lifetime costs of flotation operations. Miner Eng 21:846–850

    Article  Google Scholar 

  40. Lelinski D, Govender D, Dabrowski B, Traczyk F, Mulligan M (2011) Effective use of energy in the flotation process. In: 6th Southern African base metals conference, Phalaborwa, North West Province, 2011, pp 137–148

    Google Scholar 

  41. Evans CL, Coulter BL, Wightman E, Burrows AS (2009) Improving energy efficiency across mineral processing and smelting operations; a new approach. In: Publication series—Australasian Institute of Mining and Metallurgy, vol 6/2009, pp 9–13, 2009

    Google Scholar 

Download references

Acknowledgements

D. Sbarbaro acknowledges the kind support of the support of Solar Energy Research Center (SERC-Chile) Fondap #15110019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Bouchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouchard, J., Sbarbaro, D., Desbiens, A. (2018). Plant Automation for Energy-Efficient Mineral Processing. In: Awuah-Offei, K. (eds) Energy Efficiency in the Minerals Industry. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-54199-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54199-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54198-3

  • Online ISBN: 978-3-319-54199-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics