Skip to main content

Bioengineered Collagens

  • Chapter
  • First Online:
Fibrous Proteins: Structures and Mechanisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 82))

Abstract

There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CL:

collagen domain of the bacterial protein Scl2

D:

67 nm axial periodicity

DDR:

discoidin domain receptor

ECM:

extracellular matrix

EGF:

epidermal growth factor

Fn:

fibronectin

IL-2:

interleukin-2

MMP:

matrix metalloproteinase

P4H:

prolyl 4-hydroxylase

Scl2:

Streptococcus pyogenes collagen-like protein 2

Tm:

melting temperature

V:

trimerization domain of Scl2

vWF:

von Willebrand factor

References

  • Abraham LC, Zuena E, Perez-Ramirez B, Kaplan DL (2008) Guide to collagen characterization for biomaterial studies. J Biomed Mater Res B Appl Biomater 87:264–285

    Article  PubMed  CAS  Google Scholar 

  • Ackerman MS, Bhate M, Shenoy N, Beck K, Ramshaw JAM, Brodsky B (1999) Sequence dependence of the folding of collagen-like peptides. Single amino acids affect the rate of triple-helix nucleation. J Biol Chem 274:7668–7673

    Article  CAS  PubMed  Google Scholar 

  • An B, Brodsky B (2016) Collagen binding to OSCAR: the odd couple. Blood 127:521–522

    Article  CAS  PubMed  Google Scholar 

  • An B, DesRochers TM, Qin G, Xia X, Thiagarajan G, Brodsky B, Kaplan DL (2013) The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior. Biomaterials 34:402–412

    Article  CAS  PubMed  Google Scholar 

  • An B, Abbonante V, Yigit S, Balduini A, Kaplan DL, Brodsky B (2014) Definition of the native and denatured type II collagen binding site for fibronectin using a recombinant collagen system. J Biol Chem 289:4941–4951

    Article  CAS  PubMed  Google Scholar 

  • An B, Lin YS, Brodsky B (2016a) Collagen interactions: drug design and delivery. Adv Drug Deliv Rev 97:69–84

    Article  CAS  PubMed  Google Scholar 

  • An B, Abbonante V, Xu H, Gavriilidou D, Yoshizumi A, Bihan D, Farndale RW, Kaplan DL, Balduini A, Leitinger B, Brodsky B (2016b) Recombinant collagen engineered to bind to discoidin domain receptor functions as a receptor inhibitor. J Biol Chem 291:4343–4355

    Article  CAS  PubMed  Google Scholar 

  • Arnold WV, Sieron AL, Fertala A, Bächinger HP, Mechling D, Prockop DJ (1997) A cDNA cassette system for the synthesis of recombinant procollagens. Variants of procollagen II lacking a D-period are secreted as triple-helical monomers. Matrix Biol 16:105–116

    Article  CAS  PubMed  Google Scholar 

  • Arnold WV, Fertala A, Sieron AL, Hattori H, Mechling D, Bächinger HP, Prockop DJ (1998) Recombinant procollagen II: deletion of D period segments identifies sequences that are required for helix stabilization and generates a temperature-sensitive N-proteinase cleavage site. J Biol Chem 273:31822–31828

    Article  CAS  PubMed  Google Scholar 

  • Báez J, Olsen D, Polarek JW (2005) Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol 69:245–252

    Article  PubMed  CAS  Google Scholar 

  • Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 Ã… resolution. Science 266:75–81

    Article  CAS  PubMed  Google Scholar 

  • Bella J, Brodsky B, Berman HM (1995) Hydration structure of a collagen peptide. Structure 3:893–906

    Article  CAS  PubMed  Google Scholar 

  • Boudko SP, Engel J, Bächinger HP (2012) The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol 44:21–32

    Article  CAS  PubMed  Google Scholar 

  • Boydston JA, Chen P, Steichen CT, Turnbough CL (2005) Orientation within the exosporium and structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis. J Bacteriol 187:5310–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky B, Ramshaw JAM (1997) The collagen triple-helix structure. Matrix Biol 15:545–554

    Article  CAS  PubMed  Google Scholar 

  • Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70:301–339

    Article  CAS  PubMed  Google Scholar 

  • Brodsky B, Thiagarajan G, Madhan B, Kar K (2008) Triple-helical peptides: an approach to collagen conformation, stability, and self-association. Biopolymers 89:345–353

    Article  CAS  PubMed  Google Scholar 

  • Bronk JK, Russell BH, Rivera JJ, Pasqualini R, Arap W, Höök M, Barbu EM (2014) A multifunctional streptococcal collagen-mimetic protein coating prevents bacterial adhesion and promotes osteoid formation on titanium. Acta Biomater 10:3354–3362

    Article  CAS  PubMed  Google Scholar 

  • Browning MB, Dempsey D, Guiza V, Becerra S, Rivera J, Russell B, Höök M, Clubb F, Miller M, Fossum T, Dong JF, Bergeron AL, Hahn M, Cosgriff-Hernandez E (2012) Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater 8:1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Browning MB, Guiza V, Russell B, Rivera J, Cereceres S, Höök M, Hahn MS, Cosgriff-Hernandez EM (2014) Endothelial cell response to chemical, biological, and physical cues in bioactive hydrogels. Tissue Eng Part A 20:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA (2003) Co-translational incorporation of trans-4-hydroxyproline into recombinant proteins in bacteria. J Biol Chem 278:645–650

    Article  CAS  PubMed  Google Scholar 

  • Buevich A, Baum J (2001) Nuclear magnetic resonance characterization of peptide models of collagen-folding diseases. Philos Trans R Soc Lond Ser B Biol Sci 356:159–168

    Article  CAS  Google Scholar 

  • Bulleid NJ, John DC, Kadler KE (2000) Recombinant expression systems for the production of collagen. Biochem Soc Trans 28:350–353

    Article  CAS  PubMed  Google Scholar 

  • Buznyk O, Pasyechnikova N, Islam MM, Iakymenko S, Fagerholm P, Griffith M (2015) Bioengineered corneas grafted as alternatives to human donor corneas in three high-risk patients. Clin Transl Sci 8:558–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers PH, Cole WG (2002) Osteogenesis imperfecta. In: Royce PM, Steinmann B (eds) Connective tissue and its hereditable disorders: molecular, genetic and medical aspects, 2nd edn. Wiley-Liss, New York, pp 385–430

    Google Scholar 

  • Cereceres S, Touchet T, Browning MB, Smith C, Rivera J, Höök M, Whitfield-Cargile C, Russell B, Cosgriff-Hernandez E (2015) Chronic wound dressings based on collagen-mimetic proteins. Adv Wound Care 4:444–456

    Article  Google Scholar 

  • Chan SW, Hung SP, Raman SK, Hatfield GW, Lathrop RH, Da Silva NA, Wang SW (2010) Recombinant human collagen and biomimetic variants using a de novo gene optimized for modular assembly. Biomacromolecules 11:1460–1469

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Rashid S, Yu Z, Yoshizumi A, Hwang E, Brodsky B (2011) Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation. J Biol Chem 286:2041–2046

    Article  CAS  PubMed  Google Scholar 

  • Cosgriff-Hernandez E, Hahn MS, Russell B, Wilems T, Munoz-Pinto D, Browning MB, Rivera J, Höök M (2010) Bioactive hydrogels based on designer collagens. Acta Biomater 6:3969–3977

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Pinkas DM, Barron AE (2012) Synthesis and assembly of functional high molecular weight adiponectin multimers in an engineered strain of Escherichia coli. Biomacromolecules 13:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Du C, Wang M, Liu J, Pan M, Cai Y, Yao J (2008) Improvement of thermostability of recombinant collagen-like protein by incorporating a foldon sequence. Appl Microbiol Biotechnol 79:195–202

    Article  CAS  PubMed  Google Scholar 

  • Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW, Suuronen EJ, Liu Y, Brunette I, Griffith M (2014) Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35:2420–2427

    Article  CAS  PubMed  Google Scholar 

  • Fertala A, Sieron AL, Ganguly A, Li SW, Ala-Kokko L, Anumula KR, Prockop DJ (1994) Synthesis of recombinant human procollagen II in a stably transfected tumour cell line (HT1080). Biochem J 298:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fertala A, Holmes DF, Kadler KE, Sieron AL, Prockop DJ (1996) Assembly in vitro of thin and thick fibrils of collagen II from recombinant procollagen II. The monomers in the tips of thick fibrils have the opposite orientation from monomers in the growing tips of collagen I fibrils. J Biol Chem 271:14864–14869

    Article  CAS  PubMed  Google Scholar 

  • Fertala A, Han WB, Ko FK (2001) Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials. J Biomed Mater Res 57:48–58

    Article  CAS  PubMed  Google Scholar 

  • Fields GB (2015) New strategies for targeting matrix metalloproteinases. Matrix Biol 44-46:239–246

    Article  CAS  PubMed  Google Scholar 

  • Fowler SJ, Jose S, Zhang X, Deutzmann R, Sarras MP, Boot-Handford RP (2000) Characterization of hydra type IV collagen. Type IV collagen is essential for head regeneration and its expression is up-regulated upon exposure to glucose. J Biol Chem 275:39589–39599

    Article  CAS  PubMed  Google Scholar 

  • Francois J, Herbage D, Junqua S (1980) Cockroach collagen: isolation, biochemical and biophysical characterization. Eur J Biochem 112:389–396

    Article  CAS  PubMed  Google Scholar 

  • Frischholz S, Beier F, Girkontaite I, Wagner K, Pöschl E, Turnay J, Mayer U, von der Mark K (1998) Characterization of human type X procollagen and its NC-1 domain expressed as recombinant proteins in HEK293 cells. J Biol Chem 273:4547–4555

    Article  CAS  PubMed  Google Scholar 

  • Fukuda K, Hori H, Utani A, Burbelo PD, Yamada Y (1997) Formation of recombinant triple-helical [α1(IV)]2 α2(IV) collagen molecules in CHO cells. Biochem Biophys Res Commun 231:178–182

    Article  CAS  PubMed  Google Scholar 

  • Geddis AE, Prockop DJ (1993) Expression of human COL1A1 gene in stably transfected HT1080 cells: the production of a thermostable homotrimer of type I collagen in a recombinant system. Matrix 13:399–405

    Article  CAS  PubMed  Google Scholar 

  • Ghosh N, McKillop TJ, Jowitt TA, Howard M, Davies H, Holmes DF, Roberts IS, Bella J (2012) Collagen-like proteins in pathogenic E. coli strains. PLoS One 7:e37872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruskin EA, Buechter DD, Zhang G, Connolly K (1998) Amino acid modified polypeptides. US Patent 5821089-A

    Google Scholar 

  • Hamaia S, Farndale RW (2014) Integrin recognition motifs in the human collagens. Adv Exp Med Biol 819:127–142

    Article  PubMed  Google Scholar 

  • Han R, Zwiefka A, Caswell CC, Xu Y, Keene DR, Lukomska E, Zhao Z, Höök M, Lukomski S (2006) Assessment of prokaryotic collagen-like sequences derived from streptococcal Scl1 and Scl2 proteins as a source of recombinant GXY polymers. Appl Microbiol Biotechnol 72:109–115

    Article  CAS  PubMed  Google Scholar 

  • Hashizume F, Hino S, Kakehashi M, Okajima T, Nadano D, Aoki N, Matsuda T (2008) Development and evaluation of transgenic rice seeds accumulating a type II-collagen tolerogenic peptide. Transgenic Res 17:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Tomita M, Yoshizato K (2001) Production of EGF-collagen chimeric protein which shows the mitogenic activity. Biochim Biophys Acta 1528:187–195

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Tomita M, Yoshizato K (2002) Interleukin-2-collagen chimeric protein which liberates interleukin-2 upon collagenolysis. Protein Eng 15:429–436

    Article  CAS  PubMed  Google Scholar 

  • Hulmes DJ, Miller A, Parry DAD, Piez KA, Woodhead-Galloway J (1973) Analysis of the primary structure of collagen for the origins of molecular packing. J Mol Biol 79:137–148

    Article  CAS  PubMed  Google Scholar 

  • Humtsoe JO, Kim JK, Xu Y, Keene DR, Höök M, Lukomski S, Wary KK (2005) A streptococcal collagen-like protein interacts with the α2β1 integrin and induces intracellular signaling. J Biol Chem 280:13848–13857

    Article  CAS  PubMed  Google Scholar 

  • Hwang ES, Thiagarajan G, Parmar AS, Brodsky B (2010) Interruptions in the collagen repeating tripeptide pattern can promote supramolecular association. Protein Sci 19:1053–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Steplewski A, Alabyeva T, Fertala A (2006) Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J Biomed Mater Res A 76:551–560

    Article  PubMed  CAS  Google Scholar 

  • John DC, Watson R, Kind AJ, Scott AR, Kadler KE, Bulleid NJ (1999) Expression of an engineered form of recombinant procollagen in mouse milk. Nat Biotechnol 17:385–389

    Article  CAS  PubMed  Google Scholar 

  • Kaur PJ, Strawn R, Bai H, Xu K, Ordas G, Matsui H, Xu Y (2015) The self-assembly of a mini-fibril with axial periodicity from a designed collagen-mimetic triple helix. J Biol Chem 290:9251–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersteen EA, Higgin JJ, Raines RT (2004) Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Expr Purif 38:279–291

    Article  CAS  PubMed  Google Scholar 

  • Konitsiotis AD, Raynal N, Bihan D, Hohenester E, Farndale RW, Leitinger B (2008) Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J Biol Chem 283:6861–6868

    Article  CAS  PubMed  Google Scholar 

  • Kramer RZ, Venugopal MG, Bella J, Mayville P, Brodsky B, Berman HM (2000) Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair. J Mol Biol 301:1191–1205

    Article  CAS  PubMed  Google Scholar 

  • Krejci E, Coussen F, Duval N, Chatel JM, Legay C, Puype M, Vandekerckhove J, Cartaud J, Bon S, Massoulié J (1991) Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J 10:1285–1293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuivaniemi H, Tromp G, Prockop DJ (1991) Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J 5:2052–2060

    CAS  PubMed  Google Scholar 

  • Lauer-Fields JL, Fields GB (2002) Triple-helical peptide analysis of collagenolytic protease activity. Biol Chem 383:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26:146–155

    Article  CAS  PubMed  Google Scholar 

  • Leitinger B, Steplewski A, Fertala A (2004) The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 344:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Li HC, Huang CC, Chen SF, Chou MY (2005) Assembly of homotrimeric type XXI minicollagen by coexpression of prolyl 4-hydroxylase in stably transfected Drosophila melanogaster S2 cells. Biochem Biophys Res Commun 336:375–385

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol 130:227–237

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Luther KB, Hülsmeier AJ, Schegg B, Deuber SA, Raoult D, Hennet T (2011) Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme. J Biol Chem 286:43701–43709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majsterek I, McAdams E, Adachi E, Dhume ST, Fertala A (2003) Prospects and limitations of the rational engineering of fibrillar collagens. Protein Sci 12:2063–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merle C, Perret S, Lacour T, Jonval V, Hudaverdian S, Garrone R, Ruggiero F, Theisen M (2002) Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett 515:114–118

    Article  CAS  PubMed  Google Scholar 

  • Myllyharju J, Nokelainen M, Vuorela A, Kivirikko KI (2000) Expression of recombinant human type I-III collagens in the yeast Pichia pastoris. Biochem Soc Trans 28:353–357

    CAS  PubMed  Google Scholar 

  • Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40:399–416

    Article  CAS  PubMed  Google Scholar 

  • Nokelainen M, Helaakoski T, Myllyharju J, Notbohm H, Pihlajaniemi T, Fietzek PP, Kivirikko KI (1998) Expression and characterization of recombinant human type II collagens with low and high contents of hydroxylysine and its glycosylated forms. Matrix Biol 16:329–338

    Article  CAS  PubMed  Google Scholar 

  • Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perälä M, Hämäläinen ER, Jarvinen M, Polarek J (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55:1547–1567

    Article  CAS  PubMed  Google Scholar 

  • Olsen D, Jiang J, Chang R, Duffy R, Sakaguchi M, Leigh S, Lundgard R, Ju J, Buschman F, Truong-Le V, Pham B, Polarek JW (2005) Expression and characterization of a low molecular weight recombinant human gelatin: development of a substitute for animal-derived gelatin with superior features. Protein Expr Purif 40:346–357

    Article  CAS  PubMed  Google Scholar 

  • Ortega N, Werb Z (2002) New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 115:4201–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar PA, Chow LW, St-Pierre JP, Horejs CM, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM (2015) Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials 54:213–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng YY, Werkmeister JA, Vaughan PR, Ramshaw JAM (2009) Constructs for the expression of repeating triple-helical protein domains. Biomed Mater 4:015006

    Article  PubMed  CAS  Google Scholar 

  • Peng YY, Yoshizumi A, Danon SJ, Glattauer V, Prokopenko O, Mirochnitchenko O, Yu Z, Inouye M, Werkmeister JA, Brodsky B, Ramshaw JAM (2010) A Streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial. Biomaterials 31:2755–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng YY, Howell L, Stoichevska V, Werkmeister JA, Dumsday GJ, Ramshaw JAM (2012) Towards scalable production of a collagen-like protein from Streptococcus pyogenes for biomedical applications. Microb Cell Factories 11:146

    Article  CAS  Google Scholar 

  • Peng YY, Stoichevska V, Howell L, Madsen S, Werkmeister JA, Dumsday GJ, Ramshaw JAM (2014a) Preparation and characterization of monomers to tetramers of a collagen-like domain from Streptococcus pyogenes. Bioengineered 5:378–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng YY, Stoichevska V, Schacht K, Werkmeister JA, Ramshaw JAM (2014b) Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes. J Biomed Mater Res A 102:2189–2196

    Article  PubMed  CAS  Google Scholar 

  • Peng YY, Stoichevska V, Madsen S, Howell L, Dumsday GJ, Werkmeister JA, Ramshaw JAM (2014c) A simple cost-effective methodology for large-scale purification of recombinant non-animal collagens. Appl Microbiol Biotechnol 98:1807–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perret S, Merle C, Bernocco S, Berland P, Garrone R, Hulmes DJ, Theisen M, Ruggiero F (2001) Unhydroxylated triple helical collagen I produced in transgenic plants provides new clues on the role of hydroxyproline in collagen folding and fibril formation. J Biol Chem 276:43693–43698

    Article  CAS  PubMed  Google Scholar 

  • Perret S, Eble JA, Siljander PR, Merle C, Farndale RW, Theisen M, Ruggiero F (2003) Prolyl hydroxylation of collagen type I is required for efficient binding to integrin α1β1 and platelet glycoprotein VI but not to α2β1. J Biol Chem 278:29873–29879

    Article  CAS  PubMed  Google Scholar 

  • Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967

    Article  CAS  PubMed  Google Scholar 

  • Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B (2002) Peptide investigations of pairwise interactions in the collagen triple-helix. J Mol Biol 316:385–394

    Article  CAS  PubMed  Google Scholar 

  • Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B (2005a) Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 44:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Persikov AV, Ramshaw JAM, Brodsky B (2005b) Prediction of collagen stability from amino acid sequence. J Biol Chem 280:19343–19349

    Article  CAS  PubMed  Google Scholar 

  • Pihlajamaa T, Perälä M, Vuoristo MM, Nokelainen M, Bodo M, Schulthess T, Vuorio E, Timpl R, Engel J, Ala-Kokko L (1999) Characterization of recombinant human type IX collagen Association of alpha chains into homotrimeric and heterotrimeric molecules. J Biol Chem 274:22464–22468

    Article  CAS  PubMed  Google Scholar 

  • Pinkas DM, Ding S, Raines RT, Barron AE (2011) Tunable, post-translational hydroxylation of collagen domains in Escherichia coli. ACS Chem Biol 6:320–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Rieppo L, Töyräs J, Silvast TS, Lammi MJ, Kiviranta I (2013) Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthr Cartil 21:481–490

    Article  CAS  PubMed  Google Scholar 

  • Que RA, Chan SW, Jabaiah AM, Lathrop RH, Da Silva NA, Wang SW (2015) Tuning cellular response by modular design of bioactive domains in collagen. Biomaterials 53:309–317

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran GN, Kartha G (1955) Structure of collagen. Nature 176:593–595

    Article  CAS  PubMed  Google Scholar 

  • Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA (2009) Collagens as biomaterials. J Mater Sci Mater Med 20(Suppl 1):S3–S8

    Article  CAS  PubMed  Google Scholar 

  • Ramshaw JAM, Werkmeister JA (2010) Novel collagen constructs. Patent Appl: WO2010071938-A1

    Google Scholar 

  • Ramshaw JAM, Werkmeister JA, Dumsday GJ (2014) Bioengineered collagens: emerging directions for biomedical materials. Bioengineered 5:227–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen M, Jacobsson M, Björck L (2003) Genome-based identification and analysis of collagen-related structural motifs in bacterial and viral proteins. J Biol Chem 278:32313–32316

    Article  CAS  PubMed  Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978

    Article  PubMed  PubMed Central  Google Scholar 

  • Rich A, Crick FH (1961) The molecular structure of collagen. J Mol Biol 3:483–506

    Article  CAS  PubMed  Google Scholar 

  • Rosenbloom J, Harsch M, Jimenez S (1973) Hydroxyproline content determines the denaturation temperature of chick tendon collagen. Arch Biochem Biophys 158:478–484

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero F, Exposito JY, Bournat P, Gruber V, Perret S, Comte J, Olagnier B, Garrone R, Theisen M (2000) Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett 469:132–136

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero F, Koch M (2008) Making recombinant extracellular matrix proteins. Methods 45:75–85

    Article  CAS  PubMed  Google Scholar 

  • Rutschmann C, Baumann S, Cabalzar J, Luther KB, Hennet T (2014) Recombinant expression of hydroxylated human collagen in Escherichia coli. Appl Microbiol Biotechnol 98:4445–4455

    Article  CAS  PubMed  Google Scholar 

  • Seo N, Russell BH, Rivera JJ, Liang X, Xu X, Afshar-Kharghan V, Höök M (2010) An engineered α1 integrin-binding collagenous sequence. J Biol Chem 285:31046–31054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smethurst PA, Onley DJ, Jarvis GE, O'Connor MN, Knight CG, Herr AB, Ouwehand WH, Farndale RW (2007) Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J Biol Chem 282:1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Snellman A, Keränen MR, Hägg PO, Lamberg A, Hiltunen JK, Kivirikko KI, Pihlajaniemi T (2000) Type XIII collagen forms homotrimers with three triple helical collagenous domains and its association into disulfide-bonded trimers is enhanced by prolyl 4-hydroxylase. J Biol Chem 275:8936–8944

    Article  CAS  PubMed  Google Scholar 

  • Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27:2951–2961

    Article  CAS  PubMed  Google Scholar 

  • Stein H, Wilensky M, Tsafrir Y, Rosenthal M, Amir R, Avraham T, Ofir K, Dgany O, Yayon A, Shoseyov O (2009) Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 10:2640–2645

    Article  CAS  PubMed  Google Scholar 

  • Steplewski A, Majsterek I, McAdams E, Rucker E, Brittingham RJ, Ito H, Hirai K, Adachi E, Jimenez SA, Fertala A (2004) Thermostability gradient in the collagen triple helix reveals its multi-domain structure. J Mol Biol 338:989–998

    Article  CAS  PubMed  Google Scholar 

  • Steplewski A, Hintze V, Fertala A (2007) Molecular basis of organization of collagen fibrils. J Struct Biol 157:297–307

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Peng YY, Trueman HE, Weisman S, Okada S, Walker AA, Sriskantha A, White JF, Huson MG, Werkmeister JA, Glattauer V, Stoichevska V, Mudie ST, Haritos VS, Ramshaw JAM (2013) A new class of animal collagen masquerading as an insect silk. Sci Report 3:2864

    Article  Google Scholar 

  • Swatschek D, Schatton W, Kellermann J, Müller WE, Kreuter J (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113

    Article  CAS  PubMed  Google Scholar 

  • Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, Antipova O, Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marini JC, San Antonio JD (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283:21187–21197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang B, Chiang TM, Brand DD, Gumanovskaya ML, Stuart JM, Kang AH, Myers LK (1999) Molecular definition and characterization of recombinant bovine CB8 and CB10: immunogenicity and arthritogenicity. Clin Immunol 92:256–264

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Yang X, Hang B, Li J, Huang L, Huang F, Xu Z (2016) Efficient production of hydroxylated human-like collagen via the co-expression of three key genes in Escherichia coli Origami (DE3). Appl Biochem Biotechnol [Epub ahead of print]

    Google Scholar 

  • Toman PD, Pieper F, Sakai N, Karatzas C, Platenburg E, de Wit I, Samuel C, Dekker A, Daniels GA, Berg RA, Platenburg GJ (1999) Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgenic Res 8:415–427

    Article  CAS  PubMed  Google Scholar 

  • Toman PD, Chisholm G, McMullin H, Giere LM, Olsen DR, Kovach RJ, Leigh SD, Fong BE, Chang R, Daniels GA, Berg RA, Hitzeman RA (2000) Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 275:23303–23309

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Ohkura N, Ito M, Kato T, Royce PM, Kitajima T (1995) Biosynthesis of recombinant human pro-α1(III) chains in a baculovirus expression system: production of disulphide-bonded and non-disulphide-bonded species containing full-length triple helices. Biochem J 312:847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita M, Kitajima T, Yoshizato K (1997) Formation of recombinant human procollagen I heterotrimers in a baculovirus expression system. J Biochem 121:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

    Article  CAS  PubMed  Google Scholar 

  • Vandersmissen L, De Buck E, Saels V, Coil DA, Anné J (2010) A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells. FEMS Microbiol Lett 306:168–176

    Article  CAS  PubMed  Google Scholar 

  • Werkmeister JA, Ramshaw JAM (2012) Recombinant protein scaffolds for tissue engineering. Biomed Mater 7:012002

    Article  PubMed  CAS  Google Scholar 

  • Williams KE, Olsen DR (2009) Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen. Matrix Biol 28:373–379

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Keene DR, Bujnicki JM, Höök M, Lukomski S (2002) Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J Biol Chem 277:27312–27318

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Yu Z, Inouye M, Brodsky B, Mirochnitchenko O (2010) Expanding the family of collagen proteins: recombinant bacterial collagens of varying composition form triple-helices of similar stability. Biomacromolecules 11:348–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Gan Q, Clough RC, Pappu KM, Howard JA, Baez JA, Wang K (2011) Hydroxylation of recombinant human collagen type I α1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase. BMC Biotechnol 11:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Yamaura J, Katoh M, Hata K, Okuda K, Yoshie H (2006) Fabrication of cultured oral gingiva by tissue engineering techniques without materials of animal origin. J Periodontol 77:672–677

    Article  PubMed  Google Scholar 

  • Yang C, Hillas PJ, Báez JA, Nokelainen M, Balan J, Tang J, Spiro R, Polarek J (2004) The application of recombinant human collagen in tissue engineering. BioDrugs 18:103–119

    Article  CAS  PubMed  Google Scholar 

  • Yasothornsrikul S, Davis WJ, Cramer G, Kimbrell DA, Dearolf CR (1997) viking: identification and characterization of a second type IV collagen in Drosophila. Gene 198:17–25

    Article  CAS  PubMed  Google Scholar 

  • Yigit S, Yu H, An B, Hamaia S, Farndale RW, Kaplan DL, Lin YS, Brodsky B (2016) Mapping the effect of gly mutations in collagen on α2β 1 integrin binding. J Biol Chem 291:19196–19207

    Google Scholar 

  • Yoshizumi A, Yu Z, Silva T, Thiagarajan G, Ramshaw JAM, Inouye M, Brodsky B (2009) Self-association of Streptococcus pyogenes collagen-like constructs into higher order structures. Protein Sci 18:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshizumi A, Fletcher JM, Yu Z, Persikov AV, Bartlett GJ, Boyle AL, Vincent TL, Woolfson DN, Brodsky B (2011) Designed coiled coils promote folding of a recombinant bacterial collagen. J Biol Chem 286:17512–17520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Brodsky B, Inouye M (2011) Dissecting a bacterial collagen domain from Streptococcus pyogenes: sequence and length-dependent variations in triple helix stability and folding. J Biol Chem 286:18960–18968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Visse R, Inouye M, Nagase H, Brodsky B (2012) Defining requirements for collagenase cleavage in collagen type III using a bacterial collagen system. J Biol Chem 287:22988–22997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, An B, Ramshaw JAM, Brodsky B (2014) Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 186:451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Baez J, Pappu KM, Glatz CE (2009) Purification and characterization of a transgenic corn grain-derived recombinant collagen type I α1. Biotechnol Prog 25:1660–1668

    CAS  PubMed  Google Scholar 

  • Zhang H, Fan D, Deng J, Zhu C, Hui J, Ma X (2014) Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials. Mater Sci Eng C Mater Biol Appl 42:124–129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part through NIH grants EB011620 and GM60048 (BB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Brodsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brodsky, B., Ramshaw, J.A.M. (2017). Bioengineered Collagens. In: Parry, D., Squire, J. (eds) Fibrous Proteins: Structures and Mechanisms. Subcellular Biochemistry, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-49674-0_18

Download citation

Publish with us

Policies and ethics