Skip to main content

What Is the Transcriptome and How It Is Evaluated

  • Chapter
  • First Online:
Transcriptomics in Health and Disease

Abstract

The concept of the transcriptome revolves around the complete set of transcripts present in a given cell type, tissue, or organ and encompasses both coding and noncoding RNA molecules, although we often assume that it consists only of messenger RNAs (mRNAs) because of their importance in encoding proteins. Unlike the nuclear genome, whose composition and size are essentially static, the transcriptome often changes. The transcriptome is influenced by the phase of the cell cycle, the organ, exposure to drugs or physical agents, aging, diseases, and a multitude of other variables, all of which must be considered at the time of its determination. However, it is precisely this property that makes the transcriptome useful for the discovery of gene function and as a molecular signature. In this chapter, we review the beginnings of transcriptome research, the main types of RNA molecules found in a mammalian cell, the methods of analysis, and the bioinformatics pipelines used to organize and interpret the large quantities of data generated by the two current gold-standard methods of analysis: microarrays and high-throughput RNA sequencing (RNA-Seq). Attention is also given to noncoding RNAs, using microRNAs (miRNAs) as an example because they physically interact with mRNAs and play a role in the fine control of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams J (2008) Sequencing human genome: the contributions of Francis Collins and Craig Venter. Nat Educ 1(1):133

    Google Scholar 

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  CAS  PubMed  Google Scholar 

  • Adams MD, Dubnick M, Kerlavage AR, Moreno R, Kelley JM, Utterback TR, Nagle JW, Fields C, Venter JC (1992) Sequence identification of 2375 human brain genes. Nature 355:632–634

    Article  CAS  PubMed  Google Scholar 

  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993a) Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet 4:373–338

    Article  CAS  PubMed  Google Scholar 

  • Adams MD, Kerlavage AR, Fields C, Venter JC (1993b) Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nat Genet 4:256–267

    Article  CAS  PubMed  Google Scholar 

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005

    Article  PubMed Central  Google Scholar 

  • Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R (2010) Generating and navigating proteome maps using mass spectrometry. Nat Rev Mol Cell Biol 11:789–801

    Article  CAS  PubMed  Google Scholar 

  • Aiello S et al (2017) Extracellular vesicles derived from T regulatory cells 78. suppress T cell proliferation and prolong allograft survival. Sci Rep 7:11518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alfaro JA, Bohländer P, Dai M, Filius M, Howard CJ, van Kooten XF, Ohayon S, Pomorski A, Schmid S, Aksimentiev A, Anslyn EV, Bedran G, Cao C, Chinappi M, Coyaud E, Dekker C, Dittmar G, Drachman N, Eelkema R, Goodlett D, Hentz S, Kalathiya U, Kelleher NL, Kelly RT, Kelman Z, Kim SH, Kuster B, Rodriguez-Larrea D, Lindsay S, Maglia G, Marcotte EM, Marino JP, Masselon C, Mayer M, Samaras P, Sarthak K, Sepiashvili L, Stein D, Wanunu M, Wilhelm M, Yin P, Meller A, Joo C (2021) The emerging landscape of single-molecule protein sequencing technologies. Nat Methods 18:604–617

    Article  CAS  PubMed  Google Scholar 

  • Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7:55–65

    Article  CAS  PubMed  Google Scholar 

  • Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq – a Python framework to work with high- throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Anderson L (2014) Six decades searching for meaning in the proteome. J Proteome 107:24–30

    Article  CAS  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auer PL, Doerge RW (2010) Statistical design and analysis of RNA sequencing data. Genetics 185:405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, Causton H, Conley MP, Elespuru R et al (2005) The external RNA controls consortium: a progress report. Nat Methods 2:731–734

    Article  CAS  PubMed  Google Scholar 

  • Ball CA, Sherlock G, Parkinson H, Rocca-Sera P, Brooksbank C, Causton HC, Cavalieri D, Gaasterland T, Hingamp P et al (2002) Microarray gene expression data (MGED) society. Standards for microarray data. Science 298:539

    Article  CAS  PubMed  Google Scholar 

  • Ballarino M, Pagano F, Girardi E, Morlando M et al (2009) Coupled RNA processing and transcription of intergenic primary microRNAs. Mol Cell Biol 29:5632–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayraktar R, Van Roosbroeck K, Calin GA (2017) Cell-to-cell communication: MicroRNAs as hormones. Mol Oncol 11(12):1673–1686

    Google Scholar 

  • Bernard K, Auphan N, Granjeaud S, Victorero G, Schmitt-Verhulst AM, Jordan BR, Nguyen C (1996) Multiplex messenger assay: simultaneous, quantitative measurement of expression for many genes in the context of T cell activation. Nucleic Acids Res 24:1435–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  • Bertani S, Sauer S, Bolotin E et al (2011) The noncoding RNA mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43:1040–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertucci F, Bernard K, Loriod B, Chang YC, Granjeaud S, Birnbaum D, Nguyen C, Peck K, Jordan BR (1999) Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for smalls samples. Hum Mol Genet 9:1715–1722

    Article  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  PubMed  Google Scholar 

  • Botwell D (1999) Options available -from start to finish- for obtaining expression data by microarray. Nat Genet 21:2–32

    Google Scholar 

  • Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 107:9546–9551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17(12):719–732

    Article  CAS  PubMed  Google Scholar 

  • Bratkovic T, Rogelj B (2014) The many faces of small nucleolar RNAs. Biochim Biophys Acta 1839:438–443

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA et al (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  • Bredy TW, Lin Q, Wei W, Baker-Andresen D, Mattick JS (2011) MicroRNA regulation of neural plasticity and memory. Neurobiol Learn Mem 96:89–94

    Article  CAS  PubMed  Google Scholar 

  • Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. J Bioinforma Comput Biol 3:1171–1189

    Article  CAS  Google Scholar 

  • Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–581

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10(2):141–1488

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahan P, Rovegno F, Mooney D, Newman JC, St. Laurent G III, McCaffrey TA (2007) Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene 401:12–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are pro- cessed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo AA, Samaia HP, Dias-Neto E, Simão DF, Migotto IA, Briones MR, Costa FF, Nagai MA, Verjovski-Almeida S et al (2001) The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome. Proc Natl Acad Sci U S A 98:12103–12108

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantor CR (1990) Orchestrating the human genome project. Science 248:49–51

    Article  CAS  PubMed  Google Scholar 

  • Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17(10):1712

    Article  PubMed Central  CAS  Google Scholar 

  • Chatterjee A, Ahn A, Rodger EJ et al (2018) A guide for designing and analyzing RNA-Seq data. In: Raghavachari N, Garcia-Reyero N (eds) Gene expression analysis. Methods in molecular biology, vol 1783. Humana Press, New York

    Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614

    Article  CAS  PubMed  Google Scholar 

  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Shyu AB (2011) Mechanisms of deadenylation-dependent decay. Wiley Interdisc Rev RNA 2:167–183

    Article  CAS  Google Scholar 

  • Chen WS, Leung CM, Pan HW, Hu LY, Li SC, Ho MR, Tsai KW (2012) Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncol Rep 28:1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Dougherty ER, Bittner ML (1997) Ratio-based decisions and the quantitative analysis of cDNA microarray images. J Biomed Opt 2:364–374

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Wu R, Yang PC, Huang JY, Sher YP, Han MH, Kao WC, Lee PJ, Chiu TF et al (1998) Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51:313–324

    Article  CAS  PubMed  Google Scholar 

  • Chen J-Q, Papp G, Szodoray P, Zeher M (2016) The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev 15(12):1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang HR, Schoenfeld LW, Ruby JG et al (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol Cell 44:667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32:490–495

    Article  CAS  PubMed  Google Scholar 

  • Clément-Ziza M, Gentien D, Lyonnet S, Thiery JP, Besmond C, Decraene C (2009) Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling. BMC Genomics 26(10):246

    Article  CAS  Google Scholar 

  • Cobb JP, Mindrinos MN, Miller-Graziano C, Calvano SE, Baker HV, Xiao W, Laudanski K, Brownstein BH, Elson CM et al (2005) Application of genome-wide expression analysis to human health and disease. PNAS 102(13):4801–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cortez MA, Bueso-Ramos C, Ferdin J (2011) MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui M, Wang H, Yao X et al (2019) Circulating microRNAs in cancer: potential and challenge. Front Genet 10:626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for argonautes. Nat Rev Genet 12:19–31

    Article  CAS  PubMed  Google Scholar 

  • de Klerk E, den Dunnen JT, t Hoen PA (2014) RNA sequencing: from tag-based profiling to resolving complete transcript structure. Cell Mol Life Sci 71(18):3537–3551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Degrelle SA, Hennequet-Antier C, Chiapello H, Piot-Kaminski K, Piumi F, Robin S, Renard JP, Hue I (2008) Amplification biases: possible differences among deviating gene expressions. BMC Genomics 9:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Derrien T, Guigo R, Johnson R (2012) The long non-coding RNAs: a new (p)layer in the “dark matter”. Front Genet 2:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D et al (2013) A comprehensive evaluation of normalization methods for illumine high-throughput RNA sequencing data analysis. Brief Bioinform 14(6):671–683

    Article  CAS  PubMed  Google Scholar 

  • Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Donate PB, Fornari TA, Macedo C, Cunha TM, Nascimento DC, Sakamoto-Hojo ET, Donadi EA, Cunha FQ, Passos GA (2013) T cell post-transcriptional miRNA-mRNA interaction networks identify targets associated with susceptibility/resistance to collagen-induced arthritis. PLoS One 8(1):e54803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duewer DL, Jones WD, Reid LH, Salit M (2009) Learning from microarray interlaboratory studies: measures of precision for gene expression. BMC Genomics 10:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufva M (2005) Fabrication of high quality microarrays. Biomol Eng 22:173–184

    Article  CAS  PubMed  Google Scholar 

  • Dujon B (1998) European functional analysis network (EUROFAN) and the functional analysis of the Saccharomyces cerevisiae genome. Electrophoresis 19:617–624

    Article  CAS  PubMed  Google Scholar 

  • Edwards D (2003) Non-linear normalization and background correction in onechannel cDNA microarrays studies. Bioinformatics 19:825–833

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA et al (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95(25):14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmen J et al (2008a) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36:1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Elmen J et al (2008b) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Article  CAS  PubMed  Google Scholar 

  • Epstein JR, Leung AP, Lee KH, Walt DR (2003) High-density, microsphere based fiber optic DNA microarrays. Biosen Bioeletron 18:541–546

    Article  CAS  Google Scholar 

  • Fabbri M (2018) MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philos Trans R Soc Lond Ser B Biol Sci 373(1737):20160486

    Article  CAS  Google Scholar 

  • Fang Z, Cui X (2010) Design and validation issues in RNA-seq experiments. Brief Bioinform 12(3):280–287

    Article  CAS  Google Scholar 

  • Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  CAS  PubMed  Google Scholar 

  • Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JA, Steemers FJ, Walt DR (2000) High-density fiber optic DNA random microsphere array. Anal Chem 72:5618–5624

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1935) The design of experiments. Oliver & Boyd, Oxford, England, p 251

    Google Scholar 

  • Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-throughput sequencing data. Bioinformatics 28(24):3169–3177

    Article  CAS  PubMed  Google Scholar 

  • Foreman RE, George AL, Reimann F, Gribble FM, Kay RG (2021) Peptidomics: a review of clinical applications and methodologies. J Proteome Res, July 16. (Epub ahead of print. PMID: 34270237)

    Google Scholar 

  • Forler S, Klein O, Klose J (2014) Individualized proteomics. J Proteome 107C:56–61

    Article  CAS  Google Scholar 

  • Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105:14879–14884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR (2014) RNAi factors are present and active in human cell nuclei. Cell Rep 6(1):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for trasncriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  CAS  PubMed  Google Scholar 

  • Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):80.1–80.16

    Article  Google Scholar 

  • Gentleman RC, Carey VJ, Huber W, et al (2005) Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, 473 p

    Google Scholar 

  • Gershon D (2002) Microarray technology, an array of opportunities; technology feature. Nature 416:885–891

    Article  PubMed  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J, Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed  PubMed Central  Google Scholar 

  • Granjeaud S, Nguyen C, Rocha D, Luton R, Jordan BR (1996) From hybridization image to numerical values: a practical, high throughput quantification system for high density filter hybridizations. Genet Anal Biomol Eng 12:151–162

    Article  CAS  Google Scholar 

  • Granjeaud S, Bertucci F, Jordan BR (1999) Expression profiling: DNA arrays in many guises. BioEssays 21:781–790

    Article  CAS  PubMed  Google Scholar 

  • Gress TM, Hoheisel JD, Lennon GG, Zehetner G, Lehrach H (1992) Hybridization fingerprinting of high-density cDNA-library arrays with cDNA pools derived from whole tissues. Mamm Genome 3:609–661

    Article  CAS  PubMed  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu S, Jin L, Zhang F, Sarnow P, Kay MA (2009) Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guduric-Fuchs J, O’Connor A, Camp B et al (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyaeva LF, Kushlinskiy NE (2016) Regulatory mechanisms of microRNA expression. J Transl Med 14:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C, Che D, Dickinson T, Wickham E et al (2004) Decoding randomly ordered DNA arrays. Genome Res 14:870–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Ye F, Sheng Q, Clark T, Samuels DC (2013) Three-stage quality control strategies for DNA re-sequencing data. Brief Bioinform. https://doi.org/10.1093/bib/bbt069

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  • Haase AD, Jaskiewicz L, Zhang H, Laine S et al (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Heber S, Sick B (2006) Quality assessment of Affymetrix GeneChip data. OMICS 10(3):358–368

    Article  CAS  PubMed  Google Scholar 

  • Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(suppl 1):S96–S104

    Article  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Bioinformatics 4(2):249–264

    Google Scholar 

  • Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghegan J et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2:345–350

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Järvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kallioniemi OP, Monni O (2004) Are data from different gene expression microarray platforms comparable? Genomics 83:1164–1168

    Article  PubMed  CAS  Google Scholar 

  • Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433

    Article  CAS  PubMed  Google Scholar 

  • Jordan BR (1998) Large scale expression measurement by hybridization methods: from high-density membranes to “DNA chips”. J Biochem 124:251–258

    Article  CAS  PubMed  Google Scholar 

  • Jordan B (2012) The microarray paradigm and its various implementations. In: Jordan B (ed) Microarrays in diagnostics and biomarker development. Current and Future Applications. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Joyce S, Ternette N (2021) Know thy immune self & non-self: proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 26:e2000143

    Article  CAS  Google Scholar 

  • Kabekkodu SP, Shukla V, Varghese VK, D’Souza J et al (2018) Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 93(4):1955–1986

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35:368–376

    Article  CAS  PubMed  Google Scholar 

  • Kellis M, Wold B, Snyder MP et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111:6131–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2:183–201

    Article  CAS  PubMed  Google Scholar 

  • Khoshmirsafa M et al (2019) Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int J Rheum Dis 22:458–467

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YJ, Yeon Y, Lee WJ et al (2019) Comparison of MicroRNA expression in tears of normal subjects and Sjögren syndrome patients. Invest Ophthalmol Vis Sci 60:4889–4895

    Article  PubMed  Google Scholar 

  • Kooperberg C, Fazzio TG, Delrow JJ, Tsukiyama T (2002) Improved background correction for spotted DNA microarrays. J Comp Biol 9:55–66

    Article  CAS  Google Scholar 

  • Kozlowska J, Kolenda T, Poter P, Sobocińska J, Guglas K, Stasiak M, Bliźniak R, Teresiak A, Lamperska K (2021) Long intergenic non-coding RNAs in HNSCC: from “Junk DNA” to important prognostic factor. Cancers (Basel) 13(12):2949

    Article  CAS  Google Scholar 

  • Lamarre S et al (2018) Optimization of an RNA- Seq differential gene expression analysis depending on biological replicate number and library size. Front Plant Sci 9:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardo TR, Schultheisz HL, Loring JF, Laurent LC (2012) The functions of micro-RNAs in pluripotency and reprogramming. Nat Cell Biol 14:1114–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Mattick JS, Taft RJ (2013) A meta-analysis of the genomic and transcriptomics composition of complex life. Cell Cycle 12:2061–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) Microrna-dependent localization of targeted mRNAs to mammalian p-bodies. Nat Cell Biol 7:719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Lönnstedt I, Speed T (2002) Replicated microarray data. Stat Sin 12:31–46

    Google Scholar 

  • Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by toll-like receptor 7. Proc Natl Acad Sci U S A 101:5598–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinf 10:161

    Article  CAS  Google Scholar 

  • Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, Shi T, Tong W, Shi L et al (2010) A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenom J 10:278–291

    Article  CAS  Google Scholar 

  • Maeda N, Kasukawa T, Oyama R et al (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2:e62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mall C, Rocke DM, Durbin-Johnson B, Weiss RH (2013) Stability of miRNA in human urine supports its biomarker potential. Biomark Med 7:623–631

    Article  CAS  PubMed  Google Scholar 

  • MAQC Consortium (2006) The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  PubMed Central  CAS  Google Scholar 

  • Mariner PD, Korst A, Karimpour-Fard A, Stauffer BL, Miyamoto SD, Sucharov CC (2018) Improved detection of circulating miRNAs in Serum and plasma following rapid heat/freeze cycling. Microrna 7(2):138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Biol 20:300–307

    Article  CAS  Google Scholar 

  • Miao L, Yao H, Li C, Pu M et al (2016) A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim Biophys Acta 1859(4):650–662

    Article  CAS  PubMed  Google Scholar 

  • Minnier J, Pennock ND, Guo Q et al (2018) RNA-Seq and expression arrays: selection guidelines for genome-wide expression profiling. In: Raghavachari N, Garcia-Reyero N (eds) Gene expression analysis. Methods in molecular biology, vol 1783. Humana Press, NY, New York

    Google Scholar 

  • Moorcroft MJ, Meuleman WR, Latham SG, Nicholls TJ, Egeland RD, Edwin M, Southern EM (2005) In situ oligonucleotide synthesis on poly(dimethylsiloxane): a flexible substrate for microarray fabrication. Nucleic Acids Res 33:e75

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian trasncriptome by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Mitchell JA, Sanz LA et al (2008) The air noncoding RNA epigenetically silencestranscription by targeting G9a to chromatin. Science 322:1717–1720

    Article  CAS  PubMed  Google Scholar 

  • Napoli S (2021) LncRNAs and Available Databases. Methods Mol Biol 2348:3–26

    Article  CAS  PubMed  Google Scholar 

  • Naqvi AR, Fordham JB, Ganesh B, Nares S (2016) MiR-24, miR-30b and miR-142-3p interfere with antigen processing and presentation by primary macrophages and dendritic cells. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Neguembor MV, Jothi M, Gabellini D (2014) Long noncoding RNAs, emerging players in muscle differentiation and disease. Skelet Muscle 4:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen C, Rocha D, Granjeaud S, Baldit M, Bernard K, Naquet P, Jordan BR (1995) Differential gene expression inthe murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29:207–216

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TA, Jo MH, Choi YG, Park J et al (2015) Functional anatomy of the human microprocessor. Cell 161:1374–1387

    Article  CAS  PubMed  Google Scholar 

  • Nishikura K, Sakurai M, Ariyoshi K, Ota H (2013) Antagonistic and stimulative roles of ADAR1 in RNA silencing. RNA Biol 10:1240–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussbacher JK, Yeo GW (2018) Systematic discovery of RNA binding proteins that regulate MicroRNA levels. Mol Cell 69:1005–1016.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg JP et al (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res 12:1749–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nygaard VL, Hovig E (2006) Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res 34:996–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsuka M, Ling H, Doki Y, Mori M, Calin G (2015) MicroRNA processing and human Cancer. J Clin Med 4:1651–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okoye IS et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okubo K, Hori N, Matoba R, Niiyama T, Fukushima A, Kojima Y, Matsubara K (1992) Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet 2:173–179

    Article  CAS  PubMed  Google Scholar 

  • Oshlack A, Robinson MD, Young M (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota H, Sakurai M, Gupta R et al (2013) ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padron G, Domont GB (2014) Two decades of proteomics in Latin America: a personal view. J Proteome 107C:83–92

    Article  CAS  Google Scholar 

  • Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J (2021) Epigenetic regulation of microRNAs in cancer: shortening the distance from bench to bedside. Int J Mol Sci 22:7350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Article  CAS  PubMed  Google Scholar 

  • Park J, Seo JW, Ahn N, Park S, Hwang J, Nam JW (2019) UPF1/SMG7-dependent microRNA-mediated gene regulation. Nat Commun 10:4181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J et al (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24(9):1140–1150

    Article  CAS  PubMed  Google Scholar 

  • Paul P, Chakraborty A, Sarkar D, Langthasa M et al (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233(3):2007–2018

    Article  CAS  PubMed  Google Scholar 

  • Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA et al (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    Article  CAS  PubMed  Google Scholar 

  • Pietu G, Alibert O, Guichard V, Lamy B, Bois F, Leroy E, Mariage-Samson R, Houlgatte R, Soularue P, Auffray C (1996) Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Res 6:492–503

    Article  CAS  PubMed  Google Scholar 

  • Pietu G, Mariage-Samson R, Fayein NA, Matingou C, Eveno E, Houlgatte R, Decraene C, Vandenbrouck Y, Tahi F et al (1999) The genexpress image knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. Genome Res 9:195–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  CAS  PubMed  Google Scholar 

  • Ploner A, Miller LD, Hall P, Bergh J, Pawitan Y (2005) Correlation test to assess low-level processing of high-density oligonucleotide microarray data. BMC Bioinf 6:80

    Article  CAS  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  • Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J (2019) Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 76(3):441–451

    Article  CAS  PubMed  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  CAS  PubMed  Google Scholar 

  • Rapaport F, Khanin R, Liang Y et al (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14:3158

    Article  CAS  Google Scholar 

  • Ravasi T, Suzuki H, Pang KC et al (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripoli A, Rainaldi G, Rizzo M, Mercatanti A, Pitto L (2010) The fuzzy logic of microRNA regulation: a key to control cell complexity. Curr Genomics 11:350–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background corrections methods for two-color microarrays. Bioinformatics 23(20):2700–2707

    Article  CAS  PubMed  Google Scholar 

  • Rocha D, Carrier A, Naspetti M, Victorero G, Anderson E, Botcherby M, Nguyen C, Naquet P, Jordan BR (1997) Modulation of mRNA levels in the presence of thymocytes and genome mapping for a set of genes expressed in mouse thymic epithelial cells. Immunogenetics 46:142–151

    Article  CAS  PubMed  Google Scholar 

  • Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A (2014) miRNA biogenesis: biological impact in the development of cancer. Cancer Biol The 15:1444–1455

    Article  CAS  Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  • Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V (2015) Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schena M, Shanon D, Heller R et al (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A 93:10614–10619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyednasrollah F, Laiho A, Elo LL (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Sheu-Gruttadauria J, Pawlica P, Klum SM, Wang S et al (2019) Structural basis for target-directed microRNA degradation. Mol Cell 75:1243–1255.e7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi L, Reid LH, Jones WD et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24(9):1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Campbell G, Jones WD et al (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28(8):827–838

    Article  CAS  PubMed  Google Scholar 

  • Shin C, Nam JW, Farh KK et al (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver JD, Ritchie ME, Smyth GK (2009) Microarray background correction: maximum likelihood estimation for the normal-exponential convolution. Biostatistics 10(2):352–363

    Article  PubMed  Google Scholar 

  • Singh RL, Maganti RJ, Jabba SV, Wang M, Deng G, Heath JD, Kurn N, Wangemann P (2005) Microarray-based comparison of three amplification methods for nanogram amounts of total RNA. Am J Phys Cell Physiol 288:C1179–C1189

    Article  CAS  Google Scholar 

  • Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 10:974–978

    Article  CAS  Google Scholar 

  • Slonim DK, Yanai I (2009) Getting started in gene expression microarray analysis. PLoS Comput Biol 5(10):e1000543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  • Sogayar MC, Camargo AA, Bettoni F et al (2004) A transcript finishing initiative for closing gaps in the human transcriptome. Genome Res 14:1413–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova V, Fiorino A, Zoni E, Crippa E, Reid JF, Gariboldi M, Pierotti MA (2015) The effects of miR-20a on p21: two mechanisms blocking growth arrest in TGF-beta-responsive colon carcinoma. J Cell Physiol 230(12):3105–3114

    Article  CAS  PubMed  Google Scholar 

  • Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinf 14:91–108

    Article  Google Scholar 

  • Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R (2012) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 7(9):e44873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark A, Brennecke J, Bushati N et al (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3Í ́UTR evolution. Cell 123:1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  CAS  PubMed  Google Scholar 

  • Stekel D (2003) Microarray bioinformatics. Cambridge University Press, Cambridge. ISBN: 9780521525879

    Google Scholar 

  • Strausberg RL, Riggins GL (2001) Navigating the human transcriptome. Proc Natl Acad Sci U S A 98:11837–11838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudo K, Chinen K, Nakamura Y (1994) 2058 expressed sequence tags (ESTs) from a human fetal lung cDNA library. Genomics 24:276–279

    Article  CAS  PubMed  Google Scholar 

  • Sudo H, Mizoguchi A, Kawauchi J, Akiyama H, Takizawa S (2012) Use of non-amplified RNA samples for microarray analysis of gene expression. PLoS One 7:e31397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR et al (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    Article  CAS  PubMed  Google Scholar 

  • Takeda J, Yano H, Eng S, Zeng Y, Bell GI (1993) Construction of a normalized directionally cloned cDNA library from adult heart and analysis of 3040 clones by partial sequencing. Hum Mol Genet 2:1793–1798

    Article  CAS  PubMed  Google Scholar 

  • Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 12:2213–2223

    Article  CAS  Google Scholar 

  • Tavasolian F, Abdollahi E, Rezaei R, Momtazi-Borojeni AA et al (2018) Altered expression of microRNAs in rheumatoid arthritis. J Cell Biochem 119(1):478–487

    Article  CAS  PubMed  Google Scholar 

  • The ENCODE Consortium (2011) Standards, guidelines and best practices for RNA-Seq. Available at http://encodeproject.org/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf

  • Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578. (Erratum in: Nat Protoc 2014 9: 2513)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treiber T, Treiber N, Plessmann U, Harlander S et al (2017) A compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol Cell 66:270–284

    Article  CAS  PubMed  Google Scholar 

  • Tung SL et al (2020) Regulatory T cell extracellular vesicles modify T-effector 77. cell cytokine production and protect against human skin allograft damage. Front Cell Dev Biol 8:317

    Article  PubMed  PubMed Central  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk EL, Jaszczyszyn Y, Thermes C (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 322:12–20

    Article  PubMed  CAS  Google Scholar 

  • Van Haaften RI, Schroen B, Janssen BJ, van Erk A, Debets JJ, Smeets HJ, Smits JF, van den Wijngaard A, Pinto YM, Evelo CT (2006) Biologically relevant effects of mRNA amplification on gene expression profiles. BMC Bioinf 7:200

    Article  CAS  Google Scholar 

  • Van Heesch S, Van Iterson M, Jacobi J et al (2014) Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 15:R6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Zhou W et al (1997) Characterization of the yeast transcriptome. Cell 88:243–251

    Article  CAS  PubMed  Google Scholar 

  • Villard A, Marchand L, Thivolet C, Rome S (2015) Diagnostic value of cell-free circulating microRNAs for obesity and type 2 diabetes: a meta-analysis. J Mol Biomark Diagn 6:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vu LT, Gong J, Pham TT, Kim Y, Le MTN (2020) microRNA exchange via extracellular vesicles in cancer. Cell Prolif 53(11):e12877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner J, Riwanto M, Besler C et al (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cairns MJ (2013) Gene set enrichment analysis of RNA-Seq data:integrating differential expression and splicing. BMC Bioinf 14(Suppl 5):S16

    Article  Google Scholar 

  • Wang J, Hu L, Hamilton SR, Coombes KR, Zhang W (2003) RNA amplification strategies for cDNA microarray experiments. Biotechniques 34:394–400

    Article  PubMed  Google Scholar 

  • Wang Z, Heid B, Dai R, Ahmed SA (2018) Similar dysregulation of lupus-associated miRNAs in peripheral blood mononuclear cells and splenic lymphocytes in MRL/lpr mice. Lupus Sci Med 5:e000290

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson JD (1990) The human genome project: past, present, and future. Science 248:44–49

    Article  CAS  PubMed  Google Scholar 

  • Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD (2012) Argo- naute divides its RNA guide into domains with distinct functions and RNA- binding properties. Cell 151:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wery M, Kwapisz M, Morillon A (2011) Noncoding RNAs in gene regulation. Wiley Interdiscip Rev Syst Biol Med 3:728–738

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin´14 by lin‘4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Wilusz JE (2016) Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta 1859:128–138

    Article  CAS  PubMed  Google Scholar 

  • Wreschner DH, Herzberg M (1984) A new blotting medium for the simple Isolation and Identification of highly resolved messenger RNA. Nucleic Acids Res 12:1349–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zheng K, Yan C et al (2019) Genome-wide study of salivary microRNAs as potential noninvasive biomarkers for detection of nasopharyngeal carcinoma. BMC Cancer 19:843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wu Y, Zhang B, Ni B (2018) Noncoding RNAs in multiple sclerosis. Clin Epigenetics 10

    Google Scholar 

  • Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK et al (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue D, Liu H, Huang Y (2009) Survey of computational algorithms for microRNA target prediction. Curr Genomics 10:478–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakeri Z, Salmaninejad A, Hosseini N, Shahbakhsh Y et al (2019) MicroRNA and exosome: key players in rheumatoid arthritis. J Cell Biochem 2019

    Google Scholar 

  • Zealy RW, Wrenn SP, Davila S, Min KW, Yoon JH (2017) MicroRNA-binding proteins: specificity and function. Wiley Interdisc Rev RNA 8:5

    Article  CAS  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zuo X, Yang B et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158(3):607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao N, Hashida H, Takahashi N, Misumi Y, Sakaki Y (1995) High-density cDNA filter analysis: a novel approach for large-scale, quantitative analysis of gene expression. Gene 156:207–213

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Qi X, Chen J et al (2017) The miR-491-3p/Sp3/ABCB1 axis attenuates multidrug resistance of hepatocellular carcinoma. Cancer Lett 408:102–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our laboratories are funded by the following agencies: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, Brazil, through financial code 001), Institut National de la Santé et de la Recherche Médicale (INSERM, Paris, France), and ARCUS-PACA (Provence-Alpes-Côte d’Azur)-Brésil Cooperation Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo A. Passos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assis, A.F., Oliveira, E.H., Donate, P.B., Giuliatti, S., Nguyen, C., Passos, G.A. (2022). What Is the Transcriptome and How It Is Evaluated. In: Passos, G.A. (eds) Transcriptomics in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-87821-4_1

Download citation

Publish with us

Policies and ethics