Skip to main content

The Internet of Things and Machine Learning, Solutions for Urban Infrastructure Management

  • Chapter
  • First Online:
Mathematics of Planet Earth

Part of the book series: Mathematics of Planet Earth ((MPE,volume 5))

  • 1057 Accesses

Abstract

Urban infrastructure management requires the ability to reason about a large-scale complex system: What is the state of the system? How can it be compactly represented and quantified? How is the system likely to evolve? Reasoning calls for predictive modeling, feedback, optimization, and control. With an understanding of the system state and its likely evolution, how should resources be allocated or policies changed to produce a better outcome? By leveraging data from the Internet of Things, it becomes feasible to perform online estimation, optimization, and control of such systems to help our cities function better. This involves taking traditional applications of mathematical sciences into a large-scale, online, and adaptive setting. We focus in this chapter on two particular applications that are important to effectively manage a city: transportation and municipal water services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamowski, J., Fung Chan, H., Prasher, S.O., et al.: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res. 48(1) (2012)

    Google Scholar 

  2. Alonso-Mora, J., Samaranayake, S., Wallar, A., et al.: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci. 114(3):462–467 (2017)

    Article  Google Scholar 

  3. Aly, A.H., Wanakule, N.: Short-term forecasting for urban water consumption. J. Water Resour. Plan. Manag. 130(5), 405–410 (2004)

    Article  Google Scholar 

  4. Arandia, E., Ba, A., Eck, B., McKenna, S.: Tailoring seasonal time series models to forecast short-term water demand. J. Water Resour. Plan. Manag. 142(3), 04015067 (2016)

    Article  Google Scholar 

  5. Arandia, E., Eck, B., McKenna, S.: The effect of temporal resolution on the accuracy of forecasting models for total system demand. Procedia Eng. 89, 916–925 (2014)

    Article  Google Scholar 

  6. Arandia, E., Uber, J., Boccelli, D., et al.: Modeling automatic meter reading water demands as nonhomogeneous point processes. J. Water Resour. Plan. Manag. 140(1), 55–64 (2014)

    Article  Google Scholar 

  7. Ashy, J., Ormsbee, L.E.: Short-term water demand forecast modeling techniques: conventional methods versus AI. J. Amer. Water Works Assoc. 94(7), 64–72 (2002)

    Article  Google Scholar 

  8. Bast, H., Carlsson, E., Eigenwillig, A., et al.: Fast routing in very large public transportation networks using transfer patterns. In: Algorithms–ESA 2010, pp. 290–301. Springer, Berlin (2010)

    Chapter  Google Scholar 

  9. Baudel, T., Dablanc, L., Alguiar-Melgarejo, P., et al.: Optimizing urban freight deliveries: from designing and testing a prototype system to addressing real life challenges. Transp. Res. Proc.12, 170–180 (2016)

    Article  Google Scholar 

  10. Bayen, A., Butler, J., Patire, A.: Mobile millennium final report. Technical report, California Center for Innovative Transportation, Institute of Transportation Studies, University of California, Berkeley, Research Report, UCB-ITS-CWP-2011-6 (2011)

    Google Scholar 

  11. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Technical report, Transportation Research Board of the National Academies (1956)

    Google Scholar 

  12. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. Pract. Exper. 24(13), 1397–1420 (2012)

    Article  Google Scholar 

  13. Billings, R.B., Jones, C.V.: Forecasting Urban Water Demand, 2nd edn. American Water Works Association, Denver (2008)

    Google Scholar 

  14. Blandin, S., Gopal, V., Thirumalai, K., et al.: Prediction of duration and impact of non-recurrent events in transportation networks. In: TRISTAN VIII. San Pedro de Atacama (2013)

    Google Scholar 

  15. Borokhov, P., Blandin, S., Samaranayake, S., et al.: An adaptive routing system for location-aware mobile devices on the road network. In: 2011 14th International IEEE Conference on, Intelligent Transportation Systems (ITSC) (2011). https://doi.org/10.1109/ITSC.2011.6083021

  16. Boyer, S., Blandin, S., Wynter, L.: Stability of transportation networks under adaptive routing policies. Transp. Res. Proc. 7, 578–597 (2015). https://doi.org/10.1016/j.trpro.2015.06.030

    Article  Google Scholar 

  17. Cacchiani, V., Huisman, D., Kidd, M., et al.: An overview of recovery models and algorithms for real-time railway rescheduling. Transp. Res. B Methodol. 63, 15–37 (2014)

    Article  Google Scholar 

  18. Cheong, J., Blandin, S., Thirumalai, K., et al.: The development of a traffic decongestion engine with predictive analytic and decision support capabilities. In: 13th ITS Asia Pacific Forum (2014)

    Google Scholar 

  19. Choe, T., Skabardonis, A., Varaiya, P.: Freeway performance measurement system: an operational analysis tool. Transp. Res. Rec. 1811, 67–75 (2002)

    Article  Google Scholar 

  20. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4–6), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  21. Como, G., Lovisari, E., Savla, K.: Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. IEEE Trans. Control Netw. Syst. 2(1), 57–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Como, G., Savla, K., Acemoglu, D., et al.: Robust distributed routing in dynamical networks, Part I: locally responsive policies and weak resilience. IEEE Trans. Autom. Control 58(2), 317–332 (2013)

    MATH  Google Scholar 

  23. Cottrill, C., Pereira, F., Zhao, F., et al.: Future mobility survey: experience in developing a smartphone-based travel survey in Singapore. Transp. Res. Rec. J. Transp. Res. Board 2354, 59–67 (2013)

    Article  Google Scholar 

  24. CPLEX, IBM ILOG: CPLEX Optimization Studio (2013). http://www-03.ibm.com/software/products/us/en/ibmilogcpleoptistud/

  25. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics, vol. 12. Springer, Cham (2014)

    MATH  Google Scholar 

  26. De Wit, C.C., Morbidi, F., Ojeda, L.L., et al.: Grenoble traffic lab: an experimental platform for advanced traffic monitoring and forecasting [applications of control]. IEEE Control. Syst. 35(3), 23–39 (2015)

    Article  MathSciNet  Google Scholar 

  27. Desfontaines, L., Wynter, L.: Optimal decentralized queuing system with diversion: using incentives to influence behavior. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 1912–1919 (2016). https://doi.org/10.1109/CDC.2016.7798544

  28. Donkor, E.A., Mazzuchi, T.A., Soyer, R., et al.: Urban water demand forecasting: review of methods and models. J. Water Resour. Plan. Manag. 140(2), 146–159 (2014)

    Article  Google Scholar 

  29. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Eck, B., McKenna, S., Akrhiev, A., et al.: Pump scheduling for uncertain electricity prices. In: ASCE World Environmental and Water Resources Congress (2014)

    Google Scholar 

  31. Eck, B., Mevissen, M.: Quadratic approximations for pipe friction. J. Hydroinf. 17(3), 462–472 (2015)

    Article  Google Scholar 

  32. Eck, B., Saito, H., McKenna, S.: Temperature dynamics and water quality in distribution systems. IBM J. Res. Dev. 50(5/6), 7:1–7:8 (2016)

    Article  Google Scholar 

  33. Epanechinkov, V.: Nonparametric estimates of a multivariate probability density. Theor. Probab. Appl. 14, 153–158 (1969)

    Article  Google Scholar 

  34. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  35. Fan, Y.Y., Nie, Y.: Optimal routing for maximizing travel time reliability. Netw. Spat. Econ. 3(6), 333–344 (2006)

    Article  MATH  Google Scholar 

  36. Ferrucci, F., Bock, S., Gendreau, M.: A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods. Eur. J. Oper. Res. 225(1), 130–141 (2013)

    Article  Google Scholar 

  37. Flajolet, A., Blandin, S., Jaillet, P.: Robust adaptive routing under uncertainty. Oper. Res. 66(1), 210–229 (2017)

    Article  MathSciNet  Google Scholar 

  38. Flynn, M.R., Kasimov, A.R., Nave, J.C., et al.: Self-sustained nonlinear waves in traffic flow. Phys. Rev. E 79(5), 056113 (2009)

    Article  MathSciNet  Google Scholar 

  39. Fusco, F., Eck, B., McKenna, S.: Bad data analysis with sparse sensors for leak localisation in water distribution networks. In: Proceedings of the 22nd International Conference on Pattern Recognition (ICPR), pp. 3642–3647 (2014)

    Google Scholar 

  40. Fuxjaeger, P., Ruehrup, S., Weisgrab, H., et al.: Highway traffic flow measurement by passive monitoring of Wi-Fi signals. In: 2014 International Conference on Connected Vehicles and Expo (ICCVE), pp. 396–401 (2014). https://doi.org/10.1109/ICCVE.2014.7297578

  41. Gallotti, R., Barthelemy, M.: The multilayer temporal network of public transport in Great Britain. Sci. Data 2, 140056 (2015)

    Article  Google Scholar 

  42. Garavello, M., Piccoli, B.: Traffic Flow on Networks. American Institute of Mathematical Sciences, Springfield (2006)

    Google Scholar 

  43. Garcia-Gonzalez, J., Moraga, R., Matres, L., et al.: Stochastic joint optimization of wind generation and pumped-storage units in an electricity market. IEEE Trans. Power Syst. 23(2), 460–468 (2008)

    Article  Google Scholar 

  44. Ghaddar, B., Naoum-Sawaya, J., Kishimoto, A., et al.: A Lagrangian decomposition approach for the pump scheduling problem in water networks. Eur. J. Oper. Res. 241, 490–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Giacomello, C., Kapelan, Z., Nicolini, M.: Fast hybrid optimization method for effective pump scheduling. J. Water Resour. Plan. Manag. 139(2), 175–183 (2013)

    Article  Google Scholar 

  46. Goh, M.: Congestion management and electronic road pricing in Singapore. J. Transp. Geogr. 10, 29–38 (2002)

    Article  Google Scholar 

  47. Gregoire, J., Frazzoli, E., de la Fortelle, A., et al.: Back-pressure traffic signal control with unknown routing rates. IFAC Proc. Vol. 47(3), 11,332–11,337 (2014)

    Article  Google Scholar 

  48. Gregoire, J., Qian, X., Frazzoli, E., et al.: Capacity-aware backpressure traffic signal control. IEEE Trans. Control Netw. Syst. 2(2), 164–173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hamilton, J.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  50. Harvey, A.: Forecasting Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  51. He, Y., Blandin, S., Wynter, L., et al.: Analysis and real-time prediction of local incident impact on transportation networks. In: 2014 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 158–166. IEEE, Piscataway (2014)

    Google Scholar 

  52. Herrera, J.C., Work, D., Ban, X., et al.: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment. Transp. Res. C 18, 568–583 (2009)

    Article  Google Scholar 

  53. Herrera, M., Torgo, L., Izquierdo, J., et al.: Predictive models for forecasting hourly urban water demand. J. Hydrol. 387(1–2), 141–150 (2010)

    Article  Google Scholar 

  54. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond (2009)

    Google Scholar 

  55. Hoogendoorn, S., Landman, R., van Kooten, J., et al.: Integrated network management Amsterdam: towards a field operational test. In: Transportation Research Board 93rd Annual Meeting, 14-2755 (2014)

    Google Scholar 

  56. Horn, C., Kern, R.: Deriving public transportation timetables with large-scale cell phone data. Procedia Comput. Sci. 52, 67–74 (2015). http://dx.doi.org/10.1016/j.procs.2015.05.026

    Article  Google Scholar 

  57. Jaillet, P., Qi, J., Sim, M.: Routing optimization under uncertainty. Oper. Res. 64(1), 186–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M., et al.: Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 14(4), 1700–1707 (2013). https://doi.org/10.1109/TITS.2013.2267735

    Article  Google Scholar 

  59. Jiang, Y., Jiang, Z.P.: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica 48(10), 2699–2704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Jowitt, P.W., Germanopoulos, G.: Optimal pump scheduling in water supply networks. J. Water Resour. Plan. Manag. 118(4), 406–422 (1992)

    Article  Google Scholar 

  61. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    MATH  Google Scholar 

  62. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  63. Kamarianakis, Y., Shen, W., Wynter, L.: Real-time road traffic forecasting using regime-switching space-time models and adaptive lasso. Appl. Stoch. Model. Bus. Ind. 28(4), 297–315 (2012)

    Article  MathSciNet  Google Scholar 

  64. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  MATH  Google Scholar 

  65. Kingdom, B., Liemberger, R., Marin, P.: The challenge of reducing non-revenue water (NRW) in developing countries. Water Supply and Sanitation Sector Board Discussion Paper Series, Paper no 8, The World Bank, Washington D.C. (2006)

    Google Scholar 

  66. Kitchin, R.: The real-time city, big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)

    Article  Google Scholar 

  67. Koch, M.W., McKenna, S.A.: Distributed sensor fusion in water quality event detection. J. Water Resour. Plan. Manag. 137(1), 10–19 (2010)

    Article  Google Scholar 

  68. Krause, A., Horvitz, E., Kansal, A., et al.: Toward community sensing. In: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, pp. 481–492. IEEE Computer Society, Washington D.C. (2008)

    Google Scholar 

  69. Lahlou, S., Wynter, L.: A Nash equilibrium formulation of a tradable credits scheme for incentivizing transport choices: from next-generation public transport mode choice to HOT lanes. Transp. Res. B Methodol. 101, 185–212 (2017)

    Article  Google Scholar 

  70. Landman, R., Hoogendoorn, S., Westerman, M., et al.: Design and implementation of integrated network management in the Netherlands. In: TRB 89th Annual Meeting Compendium of Papers DVD (2010)

    Google Scholar 

  71. Le, T.V., Song, B., Wynter, L.: Real-time prediction of length of stay using passive Wi-Fi sensing. In: Communications (ICC), 2017 IEEE International Conference on, pp. 1–6. IEEE, Piscataway (2017)

    Google Scholar 

  72. LeCun, Y., Bengio, Y. , Hinton, G.: Deep learning. Nature 521, 7553 (2015)

    Article  Google Scholar 

  73. Lighthill, M., Whitham, G.: On kinematic waves, II: a theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. 229(1178), 317–345 (1956)

    MATH  Google Scholar 

  74. Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Trans. Intell. Transp. Syst. 14(2), 871–882 (2013). https://doi.org/10.1109/TITS.2013.2247040

    Article  Google Scholar 

  75. Little, K., McCrodden, B.: Minimization of raw water pumping costs using MILP. J. Water Resour. Plan. Manag. 115(4), 511–522 (1989)

    Article  Google Scholar 

  76. Lopez-Ibanez, M., Prasad, T., Paechter, B.: Ant colony optimization for optimal control of pumps in water distribution networks. J. Water Resour. Plan. Manag. 134(4), 337–346 (2008)

    Article  Google Scholar 

  77. Lv, Y., Duan, Y., Kang, W., et al.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015). https://doi.org/10.1109/TITS.2014.2345663

    Google Scholar 

  78. McCormick, G., Powell, R.: Optimal pump scheduling in water supply systems with maximum demand charges. J. Water Resour. Plan. Manag. 129(5), 372–379 (2003)

    Article  Google Scholar 

  79. McCormick, G., Powell, R.: Derivation of near-optimal pump schedules for water distribution by simulated annealing. J. Oper. Res. Soc. 55(7), 728–736 (2004)

    Article  MATH  Google Scholar 

  80. McKenna, S.A., Fusco, F., Eck, B.J.: Water demand pattern classification from smart meter data. Procedia Eng. 70, 1121–1130 (2014)

    Article  Google Scholar 

  81. McKenna, S.A., Klise, K.A., Wilson, M.P.: Testing water quality change detection algorithms. In: Proceedings of 8th Water Distribution Systems Analysis (WDSA) Symposium. ASCE, Reston (2006)

    Google Scholar 

  82. Messmer, A., Papageorgiou, M.: Metanet: A macroscopic simulation program for motorway networks. Traffic Eng. Control 31(9), 466–470 (1990)

    Google Scholar 

  83. Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 19(4), 606–616 (2011)

    Article  Google Scholar 

  84. Mitrovic, N., Asif, M.T., Dauwels, J., et al.: Low-dimensional models for compressed sensing and prediction of large-scale traffic data. IEEE Trans. Intell. Transp. Syst. 16(5), 2949–2954 (2015)

    Article  Google Scholar 

  85. Naoum-Sawaya, J., Ghaddar, B., Arandia, E., et al.: Simulation-optimization approaches for water pump scheduling and pipe replacement problems. Eur. J. Oper. Res. 246, 293–306 (2015)

    Article  MATH  Google Scholar 

  86. Niknami, M., Samaranayake, S.: Tractable pathfinding for the stochastic on-time arrival problem. In: International Symposium on Experimental Algorithms, pp. 231–245. Springer, Cham (2016)

    Chapter  Google Scholar 

  87. Paden, B., Čáp, M., Yong, S.Z., et al.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  88. Papageorgiou, M., Hadj-Salem, H., Blosseville, J.M.: Alinea: A local feedback control law for on-ramp metering. Transp. Res. Rec. 1320(1), 58–67 (1991)

    Google Scholar 

  89. Patire, A.D., Wright, M., Prodhomme, B., et al.: How much gps data do we need? Transp. Res. Part C Emerg. Technol. 58, 325–342 (2015)

    Article  Google Scholar 

  90. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. Courier Dover Publications, Mineola (2015)

    Google Scholar 

  91. Pereira, F.C., Rodrigues, F., Ben-Akiva, M.: Using data from the web to predict public transport arrivals under special events scenarios. J. Intell. Transp. Syst. 19(3), 273–288 (2015)

    Article  Google Scholar 

  92. Pinelli, F., Nair, R., Calabrese, F., et al.: Data-driven transit network design from mobile phone trajectories. IEEE Trans. Intell. Transp. Syst. 17(6), 1724–1733 (2016). https://doi.org/10.1109/TITS.2015.2496783

    Article  Google Scholar 

  93. Poonawala, H., Kolar, V., Blandin, S., et al.: Singapore in motion: insights on public transport service level through farecard and mobile data analytics. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 589–598. ACM, New York (2016). https://doi.org/10.1145/2939672.2939723

  94. Pozdnoukhov, A., Kaiser, C.: Space-time dynamics of topics in streaming text. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-based Social Networks, pp. 1–8. ACM, New York (2011)

    Google Scholar 

  95. Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. Elsevier, New-York (1971)

    MATH  Google Scholar 

  96. Purcell, M., Barry, M., Eck, B.: Using smart water meters in (near) real-time on the iWIDGET system. In: Proceedings of the 11th International Conference on Hydroinformatics (HIC2014) (2006)

    Google Scholar 

  97. Ran, B., Song, L., Zhang, J., et al.: Using tensor completion method to achieving better coverage of traffic state estimation from sparse floating car data. Plos One 11(7), 1–16 (2016). https://doi.org/10.1371/journal.pone.0157420

    Article  Google Scholar 

  98. Richards, P.: Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  99. Rinaldi, M., Himpe, W., Tampère, C.M.J.: A sensitivity-based approach for adaptive decomposition of anticipatory network traffic control. Transp. Res. Part C Emerg. Technol. 66, 150–175 (2016)

    Article  Google Scholar 

  100. Samaranayake, S., Blandin, S., Bayen, A.: A tractable class of algorithms for reliable routing in stochastic networks. Procedia. Soc. Behav. Sci. 17, 341–363 (2011)

    Article  Google Scholar 

  101. Samaranayake, S., Glaser, S., Holstius, D., et al.: Real-time estimation of pollution emissions and dispersion from highway traffic. Comput. Aided Civ. Inf. Eng. 29(7), 546–558 (2014)

    Article  Google Scholar 

  102. Sanandaji, B.M., Varaiya, P.: Compressive origin-destination estimation. Transp. Lett. 8(3), 148–157 (2016)

    Google Scholar 

  103. Sävås, F.N.: Forecast comparison of models based on SARIMA and the Kalman filter for inflation. Master’s thesis, Uppsala University (2013)

    Google Scholar 

  104. Schrank, D., Eisele, B., Lomax, T.: TTI’s 2012 urban mobility report. Texas A&M Transportation Institute. The Texas A&M University System 4 (2012)

    Google Scholar 

  105. Shen, W., Wynter, L.: Real-time road traffic fusion and prediction with GPS and fixed-sensor data. In: 2012 15th International Conference on Information Fusion, pp. 1468–1475. IEEE, Piscataway (2012)

    Google Scholar 

  106. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications. Springer, New York (2000)

    Book  MATH  Google Scholar 

  107. Smith, M.J.: The existence, uniqueness and stability of traffic equilibria. Transp. Res. B Methodol. 13(4), 295–304 (1979)

    Article  MathSciNet  Google Scholar 

  108. Smith, M.J., Liu, R., Mounce, R.: Traffic control and route choice; Capacity maximization and stability. Transp. Res. Proc. 7(1), 556–577 (2015). https://doi.org/10.1016/j.trpro.2015.06.029

    Google Scholar 

  109. Song, B., Wynter, L.: Real-time public transport service-level monitoring using passive WiFi: a spectral clustering approach for train timetable estimation. Preprint, arXiv:1703.00759 (2017)

    Google Scholar 

  110. Sterling, M., Coulbeck, B.: A dynamic programming solution to optimization of pumping costs. Proc. Inst. Civil Eng. 59(2), 813–818 (1975)

    Google Scholar 

  111. Sterling, M., Coulbeck, B.: Optimisation of water pumping costs by hierarchical methods. Proc. Inst. Civil Eng. 59(2), 787–797 (1975)

    Google Scholar 

  112. Sun, X., Munoz, L., Horowitz, R.: Highway traffic state estimation using improved mixture Kalman filters for effective ramp metering control. In: Proc. of the 42nd IEEE Conference on Decision and Control, vol. 6. IEEE, Piscataway (2003)

    Google Scholar 

  113. Tang, X., Blandin, S., Wynter, L.: A fast decomposition approach for traffic control. IFAC Proc. Vol. 47(3), 5109–5114 (2014)

    Article  Google Scholar 

  114. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Autom. Control 37(12), 1936–1948 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  115. Thiagarajan, A., Ravindranath, L., LaCurts, K., et al.: VTrack: Accurate, energy-aware road traffic delay estimation using mobile phones. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 85–98. ACM, New York (2009)

    Google Scholar 

  116. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  117. U.S. Environmental Protection Agency: Energy efficiency for water and wastewater utilities. Technical report, U.S. Environmental Protection Agency (2015). URL http://water.epa.-gov/infrastructure/sustain/energyefficiency.cfm. Accessed 11 Mar 2015

    Google Scholar 

  118. Vaccari, A., Liu, L., Biderman, A., et al.: A holistic framework for the study of urban traces and the profiling of urban processes and dynamics. In: 2009 12th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE, Piscataway (2009)

    Google Scholar 

  119. van Zyl, J.E., Savic, D., Walters, G.: Operational optimization of water distribution systems using a hybrid genetic algorithm. J. Water Resour. Plan. Manag. 130(2), 160–170 (2004)

    Article  Google Scholar 

  120. Varaiya, P.: Reducing highway congestion: an empirical approach. Eur. J. Control. 11(4–5), 301–309 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  121. Varaiya, P.: A universal feedback control policy for arbitrary networks of signalized intersections. Published online (2009). URL http://paleale.eecs.berkeley.edu/~varaiya/papers/ps.dir/090801-Intersectionsv5.pdf

  122. Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE Trans. Control Syst. Technol. 18(2), 267–278 (2010)

    Article  Google Scholar 

  123. Waraich, R.A., Galus, M.D., Dobler, C., et al.: Plug-in hybrid electric vehicles and smart grids: investigations based on a microsimulation. Transp. Res. Part C Emerg. Technol. 28, 74–86 (2013)

    Article  Google Scholar 

  124. Wongpiromsarn, T., Uthaicharoenpong, T., Wang, Y., et al.: Distributed traffic signal control for maximum network throughput. In: 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 588–595. IEEE, Piscataway (2012)

    Google Scholar 

  125. Work, D., Blandin, S., Tossavainen, O.P., et al.: A traffic model for velocity data assimilation. Appl. Math. Res. eXpress 1, 1–35 (2010)

    MathSciNet  MATH  Google Scholar 

  126. Wright, M., Horowitz, R.: Fusing loop and GPS probe measurements to estimate freeway density. IEEE Trans. Intell. Transp. Syst. 17(12), 3577–3590 (2016)

    Article  Google Scholar 

  127. Xue, M., Wu, H., Chen, W., et al.: Identifying tourists from public transport commuters. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1779–1788. ACM, New York (2014)

    Google Scholar 

  128. Yang, H., Wang, X.: Managing network mobility with tradable credits. Transp. Res. B Methodol. 45(3), 580–594 (2011)

    Article  Google Scholar 

  129. Yilmaz, M., Krein, P.T.: Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28(5), 2151–2169 (2013)

    Article  Google Scholar 

  130. Zeiler, M.D.: ADADELTA: An adaptive learning rate method. Preprint, arXiv:1212.5701 (2012)

    Google Scholar 

  131. Zheng, N., Waraich, R.A., Axhausen, K.W., et al.: A dynamic cordon pricing scheme combining the macroscopic fundamental diagram and an agent-based traffic model. Transp. Res. A Policy Pract. 46(8), 1291–1303 (2012)

    Article  Google Scholar 

  132. Zheng, Y., Capra, L., Wolfson, O., et al.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38 (2014)

    Google Scholar 

  133. Zheng, Z., Su, D.: Traffic state estimation through compressed sensing and Markov random field. Transp. Res. B Methodol. 91, 525–554 (2016). http://dx.doi.org/10.1016/j.trb.2016.06.009

    Article  Google Scholar 

  134. Zhou, P., Zheng, Y., Li, M.: How long to wait?: Predicting bus arrival time with mobile phone based participatory sensing. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 379–392. ACM, New York (2012)

    Google Scholar 

  135. Zhou, Z., De Schutter, B., Lin, S., et al.: Two-level hierarchical model-based predictive control for large-scale urban traffic networks. IEEE Trans. Control Syst. Technol. 25(2), 496–508 (2017). https://doi.org/10.1109/TCST.2016.2572169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Wynter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arandia, E., Eck, B.J., McKenna, S.A., Wynter, L., Blandin, S. (2019). The Internet of Things and Machine Learning, Solutions for Urban Infrastructure Management. In: Kaper, H., Roberts, F. (eds) Mathematics of Planet Earth. Mathematics of Planet Earth, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-22044-0_13

Download citation

Publish with us

Policies and ethics