Skip to main content
Log in

Pharmacological and therapeutic applications of Sinapic acid—an updated review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phenolic compounds, present in plants, are considered to be indispensable parts of human dietary sources. Sinapic acid, is a natural herbal compound containing phenolic acid. It is found in oranges, grapefruits, and cranberries and in herbs like canola, mustard seed and rapeseed. Sinapic acid is chemically studied as a cinnamic acid derivative that contains 3, 5-dimethoxyl and 4-hydroxyl substitutions in the phenyl group of cinnamic acid. Sinapic acid has been pharmacologically evaluated for its potent antioxidant, anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, renoprotective, neuroprotective, anti-diabetic, anxiolytic and anti-bacterial activities. In this review we have summarized the potential pharmacological and therapeutic effects of Sinapic acid in various models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agri Food Chem. 51:2866–2887

    Article  CAS  Google Scholar 

  2. Soobrattee MA, Nergheen VA, Luximonramma A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat. Res. 579:200–213

    Article  CAS  PubMed  Google Scholar 

  3. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen C (2016) Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxid Med Cell Longev 2016:3571614

    Article  PubMed  Google Scholar 

  5. Menezes JC, Kamat SP, Cavaleiro JA, Gaspar A, Garrido J, Borges F (2011) Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. Eur J Med Chem 46(2):773–777

    Article  CAS  PubMed  Google Scholar 

  6. Russell WR, Labat A, Scobbie L, Duncan GJ, Duthie GG (2009) Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chem 115:100–104

    Article  CAS  Google Scholar 

  7. Zuo Y, Wang C, Zhan J (2002) Separation, characterization, and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC−MS. J Agric Food Chem 50:3789–3794

    Article  CAS  PubMed  Google Scholar 

  8. Bondia-Pons I, Aura AM, Vuorela S, Kolehmainen M, Mykkanen H, Poutanen K (2009) Rye phenolics in nutrition and health. J Cereal Sci 49:323–336

    Article  CAS  Google Scholar 

  9. Hatcher DW, Kruger JE (1997) Simple phenolic acids in flour prepared from Canadian wheat: relationship to ash content, color, and polyphenol oxidase activity. Cereal Chem 74:337–343

    Article  CAS  Google Scholar 

  10. Herrmann K (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347

    Article  CAS  PubMed  Google Scholar 

  11. Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    Article  CAS  Google Scholar 

  12. Hosny H, El Gohary N, Saad E, Handoussa H, El Nashar RM (2018) Isolation of sinapic acid from broccoli using molecularly imprinted polymers. J Sep Sci 41(5):1164–1172

    Article  CAS  PubMed  Google Scholar 

  13. Nićiforović N, Abramovič H (2014) Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr Rev Food Sci Food Saf 13(1):34–51

    Article  PubMed  Google Scholar 

  14. Kern SM, Bennett RN, Mellon FA, Kroon PA, Garcia-Conesa MT (2003) Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J Agric Food Chem 51(20):6050–6055

    Article  CAS  PubMed  Google Scholar 

  15. Alshahrani SM, Shakeel F (2020) Solubility Data and Computational Modeling of Baricitinib in Various (DMSO + Water) Mixtures. Molecules 25(9):2124

    Article  CAS  Google Scholar 

  16. Tzagoloff A (1963) Metabolism of Sinapine in Mustard Plants. II. Purification and some properties of Sinapine esterase. Plant Physiol 38(2):207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chapple CCS, Vogt T, Ellis BE, Somervill CR (1992) An arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Quinn L, Gray SG, Meaney S, Finn S, Kenny O, Hayes M (2017) Sinapinic and protocatechuic acids found in rapeseed: isolation, characterisation and potential benefits for human health as functional food ingredients. Irish J Agri Food Res 56(1):104–119

    Article  CAS  Google Scholar 

  19. Nishizawa M, Izuhara R, Kaneko K, Fujimoto Y (1987) 3-Caffeoyl-4-sinapoylquinic acid, a novel lipoxygenase inhibitor from Gardeniae fructus. Chem Pharm Bull (Tokyo) 35:2133–2135

    Article  CAS  Google Scholar 

  20. Manach C, Scalbert A, Morand C, Rémésy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  21. Shirley AM, Chapple C (2003) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidaselike protein that functions as an acyltransferase in plant secondary metabolism. J Biol Chem 278:19870–19877

    Article  CAS  PubMed  Google Scholar 

  22. Zhang K, Zuo Y (2004) GC-MS determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice. J Agric Food Chem 52(2):222–227

    Article  CAS  PubMed  Google Scholar 

  23. Hemery YM, Anson NM, Havenaar R, Haenen GRMM, Noort MWJ, Rouau X (2010) Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Res Internat 43(5):1429–1438

    Article  CAS  Google Scholar 

  24. Piazzon A, Forte M, Nardini M (2010) Characterization of phenolics content and antioxidant activity of different beer types. J Agric Food Chem 58(19):10677–10683

    Article  CAS  PubMed  Google Scholar 

  25. Shivashankara KS, Acharya SN (2010) Bioavailability of Dietary Polyphenols and the Cardiovascular Diseases. The Open Nutraceuticals Journal 3:227–241

    Article  CAS  Google Scholar 

  26. Couteau D, McCartney AL, Gibson GR, Williamson G, Faulds CB (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90(6):873–881

    Article  CAS  PubMed  Google Scholar 

  27. Griffiths LA (1969) Metabolism of sinapic acid and related compounds in the rat. Biochem J 113(4):603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33(2):220–235

    Article  CAS  PubMed  Google Scholar 

  29. Kern SM, Bennett RN, Needs PW, Mellon FA, Kroon PA, Garcia-Conesa MT (2003) Characterization of metabolites of hydroxycinnamates in the in vitro model of human small intestinal epithelium caco-2 cells. J Agric Food Chem 51(27):7884–7891

    Article  CAS  PubMed  Google Scholar 

  30. Marković JM, Petranović NA, Baranac JM (2005) The copigmentation effect of sinapic acid on malvin: a spectroscopic investigation on colour enhancement. J Photochem Photobiol B 78(3):223–228

    Article  PubMed  Google Scholar 

  31. Fan GJ, Jin XL, Qian YP, Wang Q, Yang RT, Dai F, Tang JJ, Shang YJ, Cheng LX, Yang J, Zhou B (2009) Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications. Chemistry 15(46):12889–12899

    Article  CAS  PubMed  Google Scholar 

  32. Hameed H, Aydin S, Basaran A, Basaran N (2016) Assessment of cytotoxic properties of Sinapic acid in vitro. Turkish J Pharm Sci 13:132

    Google Scholar 

  33. Zheng LF, Dai F, Zhou B, Yang L, Liu ZL (2008) Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: mechanism and structure-activity relationship. Food Chem Toxicol 46(1):149–156

    Article  CAS  PubMed  Google Scholar 

  34. Lee-Manion AM, Price RK, Strain JJ, Dimberg LH, Sunnerheim K, Welch RW (2009) In vitro antioxidant activity and antigenotoxic effects of avenanthramides and related compounds. J Agric Food Chem 57(22):10619–106224

    Article  CAS  PubMed  Google Scholar 

  35. Cos P, Rajan P, Vedernikova I, Calomme M, Pieters L, Vlietinck AJ, Augustyns K, Haemers A, Vanden Berghe D (2002) In vitro antioxidant profile of phenolic acid derivatives. Free Radic Res 36(6):711–716

    Article  CAS  PubMed  Google Scholar 

  36. Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F (2013) Hydroxycinnamic acid antioxidants: an electrochemical overview. Biomed Res Int 2013:251754

    Article  PubMed  PubMed Central  Google Scholar 

  37. Firuzi O, Giansanti L, Vento R, Seibert C, Petrucci R, Marrosu G, Agostino R, Saso L (2003) Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines. J Pharm Pharmacol 55(7):1021–1027

    Article  CAS  PubMed  Google Scholar 

  38. Niwa T, Doi U, Kato Y, Osawa T (1999) Inhibitory mechanism of sinapinic acid against peroxynitrite-mediated tyrosine nitration of protein in vitro. FEBS Lett 459(1):43–46

    Article  CAS  PubMed  Google Scholar 

  39. Zou Y, Kim AR, Kim JE, Choi JS, Chung HY (2002) Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J Agric Food Chem 50(21):5884–58890

    Article  CAS  PubMed  Google Scholar 

  40. Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002) Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50(7):2161–2168

    Article  CAS  PubMed  Google Scholar 

  41. Exarchou V, Nenadis N, Tsimidou M, Gerothanassis IP, Troganis A, Boskou D (2002) Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J Agric Food Chem 50(19):5294–5299

    Article  CAS  PubMed  Google Scholar 

  42. Thiyam U, Stockmann H, Felde TZ, Schwarz K (2006) Antioxidant activity of rapeseed phenolics and their interaction with tocopherols during lipid oxidation. Journal of Oil & Fat Industries 83:523–528

    CAS  Google Scholar 

  43. Gaspar A, Martins M, Silva P, Garrido EM, Garrido J, Firuzi O, Miri R, Saso L, Borges F (2010) Dietary phenolic acids and derivatives. Evaluation of the antioxidant activity of sinapic acid and its alkyl esters. J Agric Food Chem. 58(21):11273–80.

  44. Lee JY (2018) Anti-inflammatory effects of sinapic acid on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Arch Pharm Res 41(2):243–250

    Article  CAS  PubMed  Google Scholar 

  45. Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, Lee JY, Lee KT (2008) Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. J Agric Food Chem 56(21):10265–10272

    Article  PubMed  Google Scholar 

  46. Lee JW, Lee DY, Lee YH (2014) Phenylpropanoids from red kohlrabi sprouts inhibits nitric oxide production in RAW 264.7 macrophage cells. Food Sci Biotechnol 23:965–969

    Article  CAS  Google Scholar 

  47. Quinn L, Gray SG, Meaney S, Finn S, Hayes M (2020) An In vitro study determining anti-inflammatory activities of sinapic acid-containing extracts generated from Irish rapeseed meal. Med Res Arch 8:10

    Article  Google Scholar 

  48. Balaji C, Muthukumaran J, Nalini N (2014) Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Hum Exp Toxicol 33(12):1253–1268

    Article  CAS  PubMed  Google Scholar 

  49. Eroğlu C, Avcı E, Vural H, Kurar E (2018) Anticancer mechanism of Sinapic acid in PC-3 and LNCaP human prostate cancer cell lines. Gene 10(671):127–134

    Article  Google Scholar 

  50. Janakiraman K, Kathiresan S, Mariadoss AV (2015) Influence of Sinapic acid on induction of apoptosis in Human Laryngeal Carcinoma cell line. Int J Modern Res Rev 2(5):165–170

    Google Scholar 

  51. Cherng YG, Tsai CC, Chung HH, Lai YW, Kuo SC, Cheng JT (2013) Antihyperglycemic action of sinapic acid in diabetic rats. J Agric Food Chem 61(49):12053–12059

    Article  CAS  PubMed  Google Scholar 

  52. Kanchana G, Shyni WJ, Rajadurai M, Periasamy R (2011) Evaluation of anti-hyperglycemic effect of Sinapic acid in normal and Streptozotocin-induced Diabetes in Albino rats. Global J Pharmacol 5(1):33–39

    Google Scholar 

  53. Alaofi AL (2020) Sinapic Acid Ameliorates the Progression of Streptozotocin (STZ)-Induced Diabetic Nephropathy in Rats via NRF2/HO-1 Mediated Pathways. Front Pharmacol 23(11):1119

    Article  Google Scholar 

  54. Shin DS, Kim KW, Chung HY, Yoon S, Moon JO (2013) Effect of sinapic acid against carbon tetrachloride-induced acute hepatic injury in rats. Arch Pharm Res 36(5):626–633

    Article  CAS  PubMed  Google Scholar 

  55. Shin DS, Kim KW, Chung HY, Yoon S, Moon JO (2013) Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch Pharm Res 36(5):608–618

    Article  CAS  PubMed  Google Scholar 

  56. Pari L, Mohamed Jalaludeen A (2011) Protective role of sinapic acid against arsenic: induced toxicity in rats. Chem Biol Interact 194(1):40–47

    Article  CAS  PubMed  Google Scholar 

  57. Bin Jardan YA, Ansari MA, Raish M, Alkharfy KM, Ahad A, Al-Jenoobi FI, Haq N, Khan MR, Ahmad A (2020) Sinapic Acid Ameliorates Oxidative Stress, Inflammation, and Apoptosis in Acute Doxorubicin-Induced Cardiotoxicity via the NF-κB-Mediated Pathway. Biomed Res Int 10:921796

    Google Scholar 

  58. Roy SJ, Mainzen Prince PS (2013) Protective effects of sinapic acid on cardiac hypertrophy, dyslipidaemia and altered electrocardiogram in isoproterenol-induced myocardial infarcted rats. Eur J Pharmacol 699(1–3):213–218

    Article  CAS  PubMed  Google Scholar 

  59. Silambarasan T, Manivannan J, Krishna Priya M, Suganya N, Chatterjee S, Raja B (2014) Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS ONE 9(12):e115682

    Article  PubMed  PubMed Central  Google Scholar 

  60. Quinn L, Gray SG, Meaney S, Finn S, McLoughlin P, Hayes M (2017) Extraction and Quantification of Sinapinic Acid from Irish Rapeseed Meal and Assessment of Angiotensin-I Converting Enzyme (ACE-I) Inhibitory Activity. J Agric Food Chem 65(32):6886–6892

    Article  CAS  PubMed  Google Scholar 

  61. Ansari MA, Raish M, Ahmad A, Ahmad SF, Mudassar S, Mohsin K, Bakheet SA (2016) Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sci 165:1–8

    Article  CAS  PubMed  Google Scholar 

  62. Ansari MA, Raish M, Ahmad A, Alkharfy KM, Ahmad SF, Attia SM, Alsaad AMS, Bakheet SA (2017) Sinapic acid ameliorate cadmium-induced nephrotoxicity: In vivo possible involvement of oxidative stress, apoptosis, and inflammation via NF-κB downregulation. Environ Toxicol Pharmacol 51:100–107

    Article  CAS  PubMed  Google Scholar 

  63. Ansari MA (2017) Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother 93:646–653

    Article  CAS  PubMed  Google Scholar 

  64. Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, Park DH, Huh Y, Park C, Cheong JH, Lee KT, Shin CY, Ryu JH (2010) Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacol 59(1–2):20–30

    Article  CAS  Google Scholar 

  65. Lee HE, Kim DH, Park SJ, Kim JM, Lee YW, Jung JM, Lee CH, Hong JG, Liu X, Cai M, Park KJ, Jang DS, Ryu JH (2012) Neuroprotective effect of sinapic acid in a mouse model of amyloid β(1–42) protein-induced Alzheimer’s disease. Pharmacol Biochem Behav 103(2):260–266

    Article  CAS  PubMed  Google Scholar 

  66. Zare K, Eidi A, Roghani M, Rohani AH (2015) The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis 30(1):205–213

    Article  CAS  PubMed  Google Scholar 

  67. Yoon BH, Jung JW, Lee JJ, Cho YW, Jang CG, Jin C, Oh TH, Ryu JH (2007) Anxiolytic-like effects of sinapic acid in mice. Life Sci. 81(3):234–240

    Article  CAS  PubMed  Google Scholar 

  68. Maddox CE, Laur LM (2010) Tian L (2010) Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa. Curr Microbiol 60:53

    Article  CAS  PubMed  Google Scholar 

  69. Tesaki S, Tanabe S, Ono H, Fukushi E, Kawabata J, Watanabe M (1998) 4-Hydroxy-3-nitrophenylacetic and Sinapic Acids as Antibacterial Compounds from Mustard Seeds. Biosci Biotechnol Biochem 62(5):998–1000

    Article  CAS  PubMed  Google Scholar 

  70. Lyon GD, McGill FM (1988) Inhibition of growth of Erwinia carotovora in vitro by phenolics. Potato Res 31:461–467

    Article  CAS  Google Scholar 

Download references

Funding

This work was not supported by any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Anandakumar Pandi searched the literature, and designed the manuscript. Vanitha Manickam Kalappan participated in discussions and suggested useful additions in the manuscript.

Corresponding author

Correspondence to Anandakumar Pandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandi, A., Kalappan, V.M. Pharmacological and therapeutic applications of Sinapic acid—an updated review. Mol Biol Rep 48, 3733–3745 (2021). https://doi.org/10.1007/s11033-021-06367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06367-0

Keywords

Navigation