Skip to main content

Aedes Control Using Sterile Insect Technique (SIT) in Malaysia

  • Chapter
  • First Online:
Genetically Modified and other Innovative Vector Control Technologies

Abstract

The continued occurrence of massive outbreaks of Aedes-borne viral diseases of dengue, chikungunya, Zika and yellow fever, in spite of intensive and extensive application of conventional control measures, necessitates application of new tools, such as sterile insect technique (SIT), to stem the tide. Sterile insect technique is a form of biological control method, whereby sterile male insects are released in overwhelming numbers in the wild. These sterile males compete with the wild males to mate with the wild females. The females mated with sterile males will produce sterile eggs that will not hatch. Sustained release of sterile males over a period of time will lead to suppression or elimination of the natural population. Sterility is induced by gamma ray from the radioisotope of cobalt-60 and cesium-137 or X-ray. SIT is safe, cost-effective and environmentally non-polluting, and insects are unable to develop resistance to this method. SIT has a strong track record of success in elimination of agricultural pests, and this led to increased interest in using SIT against mosquitoes of public health importance. Studies and trials against Aedes were conducted in the 1960s and, more recently, against Ae. albopictus with promising results. Attempts were also made to apply SIT for the control of Aedes in several countries. Malaysia’s first experience with SIT was in the 1990s, when the Malaysian Nuclear Agency teamed with the MARDI and local universities to sterilise an agricultural pest, the diamondback moth. To prepare for the possible threat of introducing the Old World screw worm (Chrysomya bezziana) into Australia from neighbouring countries, from 1995 to 2000, Australia and Malaysia undertook a collaborative myiasis control research project located at the Institut Haiwan, Kluang, Malaysia. The project assisted in suppression trials of the screw worm in Malaysia and supported research that developed and evaluated improved Old World screw worm suppression and eradication techniques. In 2014, in collaboration with the Malaysian Nuclear Agency, the IMR conducted preliminary studies to determine the optimum sterilising dose of gamma irradiation against Ae. aegypti. In addition, the impact of sterilisation on the biological parameters of Ae. aegypti was also determined. The most effective sterilising dose that did not adversely affect the male was determined to be 55 Gy. Subsequently, a new initiative of field release of sterile Aedes aegypti males for the control of dengue was initiated in 2019. This 2-year programme will aim to release gamma ray-sterilised Ae. aegypti males in three trial sites to reduce the natural mosquito population to a level below the threshold required for dengue transmission. To ensure public acceptance, public engagement, a prerequisite for a successful release programme, will be conducted intensively prior to the release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akram M, Aslamkhan M (1975) Production of dominant lethal mutations by gamma irradiation in the malaria mosquito, Anopheles stephensi. Pak J Zool 7:177–184

    Google Scholar 

  • Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson S (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10:295–311

    PubMed  PubMed Central  Google Scholar 

  • Ansari MA, Singh KR, Brooks GD, Malhotra PR, Vaidyanathan V (1977) The development of procedures and techniques for mass rearing of Aedes aegypti. Indian J Med Res 65:91–99

    PubMed  Google Scholar 

  • Baker RH, Sakai RK, Saifuddin UT (1978) Genetic sexing technique for a mosquito sterile male release. Nature 274(5668):253–255

    Google Scholar 

  • Baker RH, Reisen WK, Sakai RK, Hayes CG, Aslamkhan M, Saifuddin UT et al (1979) Field assessment of mating competitiveness of male Culex tritaeniorhynchus carrying a complex chromosomal aberration. Ann Entomol Soc Am 72(6):751–758

    Google Scholar 

  • Baker RH, Reisen WK, Sakai RK, Rathor HR, Raana K, Azra K, Niaz S (1980) Anopheles culicifacies: mating behavior and competitiveness in nature of males carrying a complex chromosomal aberration. Ann Entomol Soc Am 73(5):581–588

    Google Scholar 

  • Baker RH, Sakai RK, Raana K (1981) Genetic sexing for a mosquito sterile male release. J Hered 72:216–218

    CAS  PubMed  Google Scholar 

  • Balestrino F, Soliban SM, Gilles J, Oliva C, Benedict MQ (2010a) Ovipositional behavior in the context of mass rearing of Anopheles arabiensis. J Am Mosq Control Assoc 26:365–372

    PubMed  Google Scholar 

  • Balestrino F, Medici A, Candini G, Carrieri M, Maccagnani B, Calvitti M, Maini S, Bellini R (2010b) Gamma ray dosimetry and mating capacity studies in the laboratory on Aedes albopictus males. J Med Entomol 47:581–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balestrino F, Giles JRL, Soliban SM, Nirschl A, Benedict QE, Benedict MQ (2011) Mosquito mass rearing technology: a cold-water vortex device for continuous unattended separation of Anopheles arabiensis pupae from larvae. J Am Mosq Control Assoc 27:227–235

    PubMed  Google Scholar 

  • Balestrino F, Benedict MQ, Gilles JR (2012) A new larval tray and rack system for improved mosquito mass rearing. J Med Entomol 49:595–605

    CAS  PubMed  Google Scholar 

  • Balestrino F, Puggioli A, Gilles Jrl Bellini R (2014a) Validation of a new larval rearing unit for Aedes albopictus (Diptera: Culicidae) mass rearing. PLoS One 9:e91914

    PubMed  PubMed Central  Google Scholar 

  • Balestrino F, Puggioli A, Bellini R, Petric D, Gilles JRL (2014b) Mass production cage for Aedes albopictus (Diptera: Culicidae). J Med Entomol 51:155–163

    CAS  PubMed  Google Scholar 

  • Bellini R, Medici A, Puggioli A, Balestrino F, Carrieri M (2013) Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J Med Entomol 50(2):317–325

    CAS  PubMed  Google Scholar 

  • Benedict MQ, Knols Bgj Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS (2009) Colonisation and mass rearing: learning from others. Malar J 8:S4

    PubMed  PubMed Central  Google Scholar 

  • Blum S et al (1997) Culicidae (Diptera) in diet of predatory stage of anurans (Amphibia) in humid biotopes of the Rhine Valley. J Vector Ecol 22(1):23–29

    CAS  PubMed  Google Scholar 

  • Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin H, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles J (2014) Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 132(Suppl):150–163

    Google Scholar 

  • Bouyer J, Culbert NJ, Dicko AH, Gomez Pacheco M, Virginio J, Pedrosa MC, Garziera L, Macedo Pinto AT, Klaptocz A, Germann J, Wallner T, Salvador-Herranz G, Argiles Herrero R, Yamada H, Balestrino F, MJB V (2020) Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci Robot 5:eaba6251

    PubMed  Google Scholar 

  • Carvalho DO, Nimmo D, Naish N, McKemey AR, Gray P, Wilke AB, Marrelli MT, Virginio JF, Alphey L, Capurro ML (2014) Mass production of genetically modified Aedes aegypti for field releases in Brazil. J Vis Exp 83:e3579

    Google Scholar 

  • Cousserans J (1974) Expérience de lutte génétique contre Culex pipiens dans la région de Montpellier. Synthèse de quatre années d’observations

    Google Scholar 

  • Curtis CF (1976) Testing systems for the genetic control of mosquitoes. In: Proc XV Int Congr Ent. Washington, DC, pp 106–116

    Google Scholar 

  • Curtis CF, Brookes GD, Grover KK, Krishnamurthy BS, Laven H, Rajagopalan PK et al (1982) A field trial on genetic control of Culex p. fatigans by release of the integrated strain IS-31B. Entomologia Experimentalis et Applicata 31:181–190

    Google Scholar 

  • Dame DA, Woodard DB, Ford HR, Weidhaas DE (1964) Field behavior of sexually sterile Anopheles quadrimaculatus males. Mosq News 24(1):6–14

    Google Scholar 

  • Dame DA, Lowe RE, Williamson DL (1981) Assessment of released sterile Anopheles albimanus and Glossina morsitans morsitans. In: Pal R, Kitzmiller JB, Kanda T (eds) Cytogenetics and genetics of vectors: proceedings of a symposium of the XVIth International Congress of Entomology. Kodansha, Elsevier Biomedical Press, Tokyo, New York

    Google Scholar 

  • Damiens D, Benedict MQ, Wille M, Gilles JRL (2012) An inexpensive and effective larval diet for Anopheles arabiensis (Diptera: Culicidae): eat like a horse, a bird or a fish? J Med Entomol 10:1–1011

    Google Scholar 

  • Davidson G, Odetoyinbo JA, Colussa B, Coz J (1970) A field attempt to assess the mating competitiveness of sterile males produced by crossing two member species of the Anopheles gambiae complex. Bull World Health Organ 42:55–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyck VA, Hendrichs J, Robinson AS (2005) Chapter 1.1: History of sterile insect technique. In: Klassen W, Curtis CF (eds) Sterile insect technique principles and practise in area-wide integrated pest management. Springer, Dordrecht, 799pp, pp 4–28

    Google Scholar 

  • Environmental Justice Foundation (EJF) (2002) Death in small doses: Cambodia’s pesticide problems and solutions. Environmental Justice Foundation, London. http://www.ejfoundation.org/

    Google Scholar 

  • Environmental Justice Foundation (EJF) (2003) What’s your poison? Health threats posed by pesticides in developing countries. Environmental Justice Foundation, London. http://www.ejfoundation.org/poison.html

    Google Scholar 

  • Gouagna LC (2016) Mosquito SIT in France and French territories. In: FAO/IAEA workshop on sterile insect technique-based approaches to control populations of mosquito disease vectors: with special reference to dengue, chikungunya & Zika vectors, 5–9 Sept, Kuala Lumpur

    Google Scholar 

  • Grover KK, Curtis CF, Sharma VP, Singh KRP, Dietz K, Agarwal HV, Razdan RK, Vaidyanathan V (1976a) Competitiveness of chemosterilized males and cytoplasmically incompatible-translocated (IS-31B) males of Culex pipiens fatigans in the field. Bull Entomol Res 66:469–480

    Google Scholar 

  • Grover KK, Suguna SG, Uppal DK, Singh KRP, Ansari MA, Curtis CF et al (1976b) Field experiments on the competitiveness of males carrying genetic control systems for Aedes aegypti. Entomologia Experimentalis et Applicata 20(1):8–18

    Google Scholar 

  • Helinski Meh Parker AG, Knols BG (2006) Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J 5:41

    Google Scholar 

  • Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O’Neill SL (2014) Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8:e3115

    PubMed  PubMed Central  Google Scholar 

  • IAEA (2002) Technical reports series no. 409. Dosimetry for food irradiation. International Atomic Energy Agency, Vienna, p 161

    Google Scholar 

  • International Standards for Phytosanitary Measures (2005) Guidelines for the export, shipment, import and release of biological control agents and other beneficial organisms. https://www.evira.fi/files/attachments/fi/kasvit/torjuntaeliot/1146657660135_ispm3.pdf

  • Iyaloo DP, Elahee KB, Bheecarry A, Lees RS (2014) Guidelines to site selection for population surveillance and mosquito control trials: a case study from Mauritius. Acta Trop 132:S140–S149

    PubMed  Google Scholar 

  • Kittayapong P, Kaeothaisong NO, Ninphanomchai S, Limohpasmanee W (2018) Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasit Vectors 11:657

    PubMed  PubMed Central  Google Scholar 

  • Kittayapong P, Ninphanomchai S, Limohpasmanee W, Chansang C, Chansang U, Mongkalangoon P (2019) Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl Trop Dis 13:e0007771

    PubMed  PubMed Central  Google Scholar 

  • Kostas B (2016) Integrated vector management approaches with a sterile insect technique (SIT) component to control Aedes mosquito populations. In: FAO/IAEA workshop on sterile insect technique-based approaches to control populations of mosquito disease vectors: with special reference to dengue, chikungunya & Zika vectors, 5–9 Sept, Kuala Lumpur

    Google Scholar 

  • Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216(5113):383–384

    CAS  PubMed  Google Scholar 

  • Laven H, Cousserans J, Guille G (1972) Eradicating mosquitoes using translocations: a first field experiment. Nature 236(5348):456–457. https://doi.org/10.1038/236456a0

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2016) Updated progress of field trial to suppress Aedes albopictus population using the combined IIT/SIT in China. In: FAO/IAEA workshop on sterile insect technique-based approaches to control populations of mosquito disease vectors: with special reference to dengue, chikungunya & Zika vectors, 5–9 Sept, Kuala Lumpur

    Google Scholar 

  • Lofgren CS, Dame DA, Breeland SG, Weidhaas DE, Jeffery G, Kaiser R, Ford R, Boston MD, Baldwin K (1974) Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. III. Field methods and population control. Am J Trop Med Hyg 23:288–297

    CAS  PubMed  Google Scholar 

  • Lundstrom J (2016) Toward SIT-based control of Aedes sticticus populations in Sweden. In: FAO/IAEA workshop on sterile insect technique-based approaches to control populations of mosquito disease vectors: with special reference to dengue, chikungunya & Zika vectors, 5–9 Sept, Kuala Lumpur

    Google Scholar 

  • Mahon RJ, Ahmad H (2000) Mass rearing the old world screw-worm fly, Chrysomya bezziana. In: Tan KH (ed) Proceedings: area-wide control of fruit flies and other insect pests. International conference on area-wide control of insect pests, and the 5th international symposium on fruit flies of economic importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, pp 325–328

    Google Scholar 

  • Maiga H, David Damiens D, Diabaté A, Dabiré RK, Ouédraogo GA, Lees RS, Gilles JRL (2016) Large-scale Anopheles arabiensis egg quantification methods for mass-rearing operations. Malar J 15:72. https://doi.org/10.1186/s12936-016-1119-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maïga H, Mamai W, Bimbilé Somda NS, Konczal A, Wallner T, Herranz GS et al (2019) Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLoS Negl Trop Dis 13(9):e0007775

    PubMed  PubMed Central  Google Scholar 

  • Maïga H, Mamai W, Bimbilé Somda NS, Wallner T, Poda BS, Salvador-Herranz G et al (2020) Assessment of a novel adult mass-rearing cage for Aedes Albopictus (Skuse) and Anopheles Arabiensis (Patton). Insects 11(11):801

    PubMed Central  Google Scholar 

  • Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, Teixeira L, Jiggins FM (2014) Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog 10:e1004369

    PubMed  PubMed Central  Google Scholar 

  • Medici A, Carrieri M, Scholte E-J, MacCagnani B, Dindo ML, Bellini R (2011) Studies on Aedes albopictus larval mass-rearing optimization. J Econ Entomol 104:266–273

    PubMed  Google Scholar 

  • Morlan HB, McCray EM, Kilpatrick JW (1962) Field tests with sexually sterile males for control of Aedes aegypti. Mosq News 22:295–300

    Google Scholar 

  • Nagel P, Peveling R (2005) Environment and the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique, Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 499–524

    Google Scholar 

  • Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N et al (2019) Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol 29(24):4241–4248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omar D, Mamat MJ (1996) The feasibility of using sterile insect technique for the control of diamondback moth on cabbage in Cameron Highlands. In: Proceedings of the 3rd international workshop on “The management of diamondback moth & other crucifer insects”, Kuala Lumpur, 29 Oct–1 Nov 1996

    Google Scholar 

  • Packierisamy PR, Ng C-W, Dahlui M, Inbaraj J, Balan VK, Halasa YA, Shepard DS (2015) Cost of dengue vector control activities in Malaysia. Am J Trop Med Hyg 93(5):1020–1027. https://doi.org/10.4269/ajtmh.14-0667

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson RS, Weidhaas DE, Ford HR, Lofgren CS (1970) Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males. Science 168(3937):1368–1369

    CAS  PubMed  Google Scholar 

  • Puggioli A, Balestrino F, Damiens D, Lees RS, Soliban SM, Madakacherry O, Dindo ML, Bellini R, Gilles JRL (2013) Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae). J Med Entomol 50:819–825

    PubMed  Google Scholar 

  • Reisen WK, Baker RH, Sakai RK, Mahmood F, Rathor HR, Raana K, Toqir G (1981) Anopheles culicifacies Giles: mating behavior and competitiveness in nature of chemosterilized males carrying a genetic sexing system. Ann Entomol Soc Am 74(4):395–401

    Google Scholar 

  • Reisen WK, Milby MM, Asman SM, Bock ME, Meyer RP, McDonald PT, Reeves WC (1982) Attempted suppression of a semi-isolated Culex tarsalis population by the release of irradiated males: a second experiment using males from a recently colonized strain. Mosq News 42(4):565–575

    Google Scholar 

  • Robinson AS, Henderichs J (2005) Prospects for the future development & application of the SIT. In: Dyck VA, Hendrichs J, Robinson AS (eds) Area-wide integrated pest management, sterile insect technique principles and practice. Springer, Dordrecht, pp 727–760

    Google Scholar 

  • Scott TW, Rasgon J, Black W, Gould F (2006) Fitness studies: developing a consensus methodology. In: Knols BGJ, Louis C (eds) Bridging laboratory and field research for genetic control of disease vectors. Springer, Dordrecht, pp 171–181

    Google Scholar 

  • Seawright JA, Kaiser PE, Dame DA, Lofgren CS (1978) Genetic method for the preferential elimination of females of Anopheles albimanus. Science 200(4347):1303–1304

    CAS  PubMed  Google Scholar 

  • Sharma VP, Patterson RS, Ford HR (1972) A device for the rapid separation of male and female pupae. Bull World Health Organ 47:429–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KRP, Patterson RS, LaBrecque GC, Razdan RK (1975) Mass rearing of Culex pipiens fatigans Wied. J Commun Dis 7(1):31–53

    Google Scholar 

  • Somda NSB, Maïga H, Mamai W, Yamada H, Ali A, Konczal A et al (2019) Insects to feed insects-feeding Aedes mosquitoes with flies for laboratory rearing. Sci Rep 9(1):1–13

    Google Scholar 

  • Suguna SG, Curtis CF, Kazmi SJ, Singh KRP, Razdan RK, Sharma VP (1977) Distorter-double translocation heterozygote systems in Aedes aegypti. Reprinted from Genetica 47(2):117–123

    Google Scholar 

  • Thien LB (1969) Mosquito pollination of Habenaria obtusata (Orchidaceae). Am J Bot 56:232–237

    Google Scholar 

  • Wakid AM, Tantawy AO, Abdel-Malek AA, El-Gazzar LM (1976) Irradiation of the immature stages of the mosquito, Anopheles pharoensis Theob., with 60Co. J Appl Entomol 80:311–316

    Google Scholar 

  • Weidhaas DE, Schmidt CH, Seabrook EL (1962) Field studies on the release of sterile males for the control of Anopheles quadrimaculatus. Mosq News 22(3):283–291

    Google Scholar 

  • Whitten M, Mahon R (2005) Misconceptions and constraints. In: Dyck VA, Hendrichs J, Robinson AS (eds) Area-wide integrated pest management, sterile insect technique principles and practice. Springer, Dordrecht, pp 601–626

    Google Scholar 

  • World Health Organisation (2017) Global vector control response 2017–2030, WHO/HTM/GVCR/2017.01

    Google Scholar 

  • Wyss JH (2002) Overview of the sterile insect technique in screw-worm fly eradication. In: Proceedings of the screw-worm fly emergency preparedness conference, 12–15 Nov 2001, Canberra, Australia. Agriculture, Fisheries and Forestry, Canberra, pp 176–181

    Google Scholar 

  • Yamada H, Maiga H, Juarez J, Carvalho DDO, Mamai W, Ali A et al (2019) Identification of critical factors that significantly affect the doseresponse in mosquitoes irradiated as pupae. Parasit Vectors 12(1):1–13

    CAS  Google Scholar 

  • Yasuno M, Macdonald WW, Curtis CF, Grover KK, Rajagopalan PK, Sharwa LS et al (1978) A control experiment with chemosterilized male Culex pipiens fatigans Wied. in a village near Delhi surrounded by a breeding-free zone. Med Entomol Zool 29(4):325–343

    Google Scholar 

  • Zheng ML, Zhang DJ, Damiens DD, Yamada H, Gilles JRL (2015a) Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)—I—egg quantification. Parasit Vectors 8:42

    PubMed  PubMed Central  Google Scholar 

  • Zheng ML, Zhang DJ, Damiens DD, Lees RL, Gilles JRL (2015b) Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)—II—egg storage and hatching. Parasit Vectors 8:348

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasi Ahmad Nazni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazni, W.A. et al. (2021). Aedes Control Using Sterile Insect Technique (SIT) in Malaysia. In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_8

Download citation

Publish with us

Policies and ethics