Skip to main content

Three Decades of Malaria Vector Control in Sudan: The Plausible Role of Sterile Insect Technique (SIT)

  • Chapter
  • First Online:
Genetically Modified and other Innovative Vector Control Technologies
  • 510 Accesses

Abstract

In Northern State, Sudan, a feasibility study for sterile insect technique (SIT) in an area-wide integrated pest management was established for the first time in an African country. The aim of the study was to see whether it is feasible, from a technical, an economical and a biological perspective, to use sterile male mosquitoes to control mosquito populations in designated areas in the African context. The project was focussed on Anopheles arabiensis, one of the major malaria vectors. Meteorological data, larval surveillance and population genetic studies were carried out on the disease vectors. The first phase of the study focussed on the development of an efficient sex-separation system, development of dose-sterility curves for the pupal and adult stages and testing of a range of doses in competition experiments to determine effective sterility dose. This stage was followed by a semi-field phase that monitored their swarming and mating behaviours, effectiveness of irradiated males in competitive experiments with wild males and insemination rates. Information regarding irradiation and transportation of irradiated males were also obtained during the study. Unfortunately, the SIT study was terminated in 2017 before starting field release of irradiated males. In spite of the challenges, such investment need not be totally abandoned as valuable experience has been gained and capacity built, which are of high value to malaria control program in Sudan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageep T, Damiens D, Alsharif B, Ahmed A, Salih E, Ahmed F, Diabaté A, Lees R, Gilles J, El Sayed B (2014) Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan. Malar J 13:484. http://www.malariajournal.com/content/13/1/484

    Article  Google Scholar 

  • Akpodiete N, Diabate A, Tripet F (2019) Effect of water source and feed regime on development and phenotypic quality in Anopheles gambiae (s.l.): prospects for improved mass-rearing techniques towards release programmes. Parasite Vector 12:210. https://doi.org/10.1186/s13071-019-3465-0

    Article  Google Scholar 

  • Ali B, Ageep T, Ahmed A, Salih E, Tagelsir F, El Sayed B (2018) Field evaluation of novel candidate traps for surveillance of mosquitoes in area for sterile insect technique trial in Sudan. Poster

    Google Scholar 

  • Azrag R, Ibrahim K, Malcolm C, El Rayah E, El-Sayed B (2016) Laboratory rearing of Anopheles arabiensis: impact on genetic variability and implications for Sterile Insect Technique (SIT) based mosquito control in northern Sudan. Malar J 15:432. https://doi.org/10.1186/s12936-016-1484-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balfour A (1904) First report of the Welcome Tropical Research Laboratories at the Gordon Memorial College Department of Education. Gordon Medical College, Khartoum, p 12

    Google Scholar 

  • Benedict M, Robinson A (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19:349–355

    Article  Google Scholar 

  • Catteruccia F, Benton J, Crisanti A (2005) An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23:1414–1417

    Article  CAS  Google Scholar 

  • Culbert N, Maiga H, Somda N, Gilles J, Bouyer J, Mamai W (2018) Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasite Vector 11:603. https://doi.org/10.1186/s13071-018-3191-z

    Article  CAS  Google Scholar 

  • Curtis C (1978) Genetic sex separation in Anopheles arabiensis and the production of sterile hybrids. Bull World Health Organ 56(3):453–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dame D, Lowe R, Williamson D (1981) Assessment of released sterile Anopheles albimanus and Glossina morsitans morsitans. In: Kitzmiller JB, Kanda T (eds) Cytogenetics and genetics of vectors. Elsevier Biomedical, New York, pp 231–248

    Google Scholar 

  • Damiens D, Benedict M, Wille M, Gilles J (2012) An inexpensive and effective larval diet for Anopheles arabiensis (Diptera: Culicidae): eat like a horse, a bird, or a fish? J Med Entomol 49(5):1001–1011. https://doi.org/10.1603/ME11289

    Article  CAS  PubMed  Google Scholar 

  • Damiens D, Vreysen M, Gilles J (2013) Anopheles arabiensis sperm production after genetic manipulation, dieldrin treatment, and irradiation. J Med Entomol 50(2):314–316. https://doi.org/10.1603/ME12058

    Article  CAS  PubMed  Google Scholar 

  • El Gadal AA, Haridi AM, Hassan F, Hussein H (1985) Malaria control in the Gezira-Managil irrigated scheme of the Sudan. J Trop Med Hyg 88:153–159

    Google Scholar 

  • El Sayed B, Malcolm C, Babiker A, Malik E, El Tayeb M, Saeed N, Nugud A, Knols B (2009) Ethical, legal and social aspects of the approach in Sudan. Malar J 8(Suppl. 2):S3. https://doi.org/10.1186/1475-2875-8-S2-S3

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossman G, Rafferty C, Clayton J, Stevens T, Mukabayire O, Benedict M (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10:597–604

    Article  CAS  Google Scholar 

  • Gunathilaka N, Ranathunge T, Udayanga L, Wijegunawardena A, Gilles J, Abeyewickreme W (2019) Use of mechanical and behavioural methods to eliminate female Aedes aegypti and Aedes albopictus for sterile insect technique and incompatible insect technique applications. Parasit Vectors 12:148. https://doi.org/10.1186/s13071-019-3398-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Haridi AM (1972) Partial exophily of Anopheles gambiae species B in Khashm Elgirba area in eastern Sudan. Bull World Health Organ 46:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan M, Zain H, Basheer M, Elhaj H, El-Sayed B (2014) Swarming and mating behavior of male Anopheles arabiensis Patton (Diptera: Culicidae) in an area of the Sterile Insect Technique Project in Dongola, northern Sudan. Acta Trop 132S:S64–S69

    Article  Google Scholar 

  • Helinski M, Knols B (2009) Sperm quantity and size variation in un-irradiated and irradiated males of the malaria mosquito Anopheles arabiensis Patton. Acta Trop 109:64–69

    Article  Google Scholar 

  • Helinski M, El-Sayed B, Knols B (2006a) The Sterile Insect Technique: can established technology beat malaria? Entomol Berichten 66(1):13–20

    Google Scholar 

  • Helinski M, Parker A, Knols B (2006b) Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J 5:41. https://doi.org/10.1186/1475-2875-5-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Helinski M, Hassan M, El-Motasim W, Malcolm C, Knols B, El-Sayed B (2008a) Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: irradiation, transportation, and field cage experimentation. Malar J 7:65. https://doi.org/10.1186/1475-2875-7-65

    Article  PubMed  PubMed Central  Google Scholar 

  • Helinski M, Hood R, Knols B (2008b) A stable isotope dual-labelling approach to detect multiple insemination in un-irradiated and irradiated Anopheles arabiensis mosquitoes. Parasit Vectors 1:9. https://doi.org/10.1186/1756-3305-1-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail BA, Kafy HT, Suleiman JE, Subramaniam K, Thomas B, Kassim NF, Ahmad AH, Knox TB, Kleinschmidt I, Donelly MJ (2018) Temporal and spatial trends in insecticide resistance in Anopheles arabiensis in Sudan: outcomes from an evaluation of implications of insecticide for malaria vector control. Parasit Vectors 11:122

    Article  Google Scholar 

  • Klassen W, Curtis C (2005) History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practices in area-wide integrated pest management. Springer, Dordrecht, pp 39–68

    Chapter  Google Scholar 

  • Lees R, Gilles J, Hendrichs J, Vreysen M, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162

    Article  Google Scholar 

  • Lofgren C, Dame D, Breeland S, Weidhaas D, Jeffery G, Kaiser R, Ford H, Boston M, Baldwin K (1974) Release of chemosterilized males for the control of Anopheles albimanus in El Salvador III. Field methods and population control. Am J Trop Med Hyg 23:288–297

    Article  CAS  Google Scholar 

  • Malcolm C, Welsby D, El Sayed B (2007) SIT for malaria vector Anopheles arabiensis in northern state, Sudan: an historical review of the field site. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht, pp 361–372

    Chapter  Google Scholar 

  • Malik EM, Ali E, Mohamed TA (2006) Efforts to control malaria in Sudan—case study of the National Malaria Control Programme, 2001–2005. SIMET 11:77–85

    Google Scholar 

  • Mshinda H, Killeen G, Mukabana W, Mathenge E, Mboera L, Knols B (2004) Development of genetically modified mosquitoes in Africa. Lancet Infect Dis 4:264–265. http://infection.thelancet.com

    Article  Google Scholar 

  • Munhenga G, Brooke B, Chirwa T, Hunt R, Coetzee M, Govender D, Koekemoer L (2011) Evaluating the potential of the sterile insect technique for malaria control: relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasit Vectors 4:208. http://www.parasitesandvectors.com/content/4/1/208

    Article  Google Scholar 

  • Munhenga G, Brooke B, Gilles J, Slabbert K, Kemp A, Dandalo L, Wood O, Lobb L, Govender D, Renke M, Koekemoer L (2016) Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasit Vectors 9:122. https://doi.org/10.1186/s13071-016-1385-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva C, Benedict M, Soliban S, Lemperiere G, Balestrino F, Gilles J (2012) Comparisons of life-history characteristics of a genetic sexing strain with laboratory strains of Anopheles arabiensis (Diptera: Culicidae) from northern Sudan. J Med Entomol 49(5):1045–1051. https://doi.org/10.1603/ME11292

    Article  CAS  PubMed  Google Scholar 

  • Poda S, Guissou E, Maïga H, Bimbile-Somda S, Gilles J, Rayaisse J, Lefèvre T, Roux O, Dabiré R (2018) Impact of irradiation on the reproductive traits of field and laboratory An. arabiensis mosquitoes. Parasit Vectors 11:641. https://doi.org/10.1186/s13071-018-3228-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson A, Knols B, Voigt G, Hendrichs J (2009) Conceptual framework and rationale. Malar J 8(Suppl 2):S1. https://doi.org/10.1186/1475-2875-8-S2-S1

    Article  PubMed  PubMed Central  Google Scholar 

  • Scolari F, Siciliano P, Gomulski P, Bonomi A, Malacrida G (2010) Safe and fit genetically modified insects for pest control: from lab to field applications. Genetica. https://doi.org/10.1007/s10709-010-9483-7

  • Touré Y, Dolo G, Petrarca V, Traoré S, Bouaré M, Dao A, Carnahan J, Taylor C (1998) Mark–release–recapture experiments with Anopheles gambiae s.l. in Banambani Village, Mali, to determine population size and structure. Med Vet Entomol 12:74–83

    Article  Google Scholar 

  • Urquidi J, Brar R, Rodriguez S, Hansen I (2015) The development of new radiation protocols for insect sterilization using long wavelength X-rays. Radiat Phys AIP Conf Proc 1671:020010-1–020010-7. https://doi.org/10.1063/1.4927187

    Article  Google Scholar 

  • Vreysen M (1995) Radiation induced sterility to control Tsetse flies. PhD thesis, Wageningen Agricultural University

    Google Scholar 

  • White G (1974) Anopheles gambiae complex and disease transmission in Africa. Trans Roy Soc Trop Med Hyg 68:278–301

    Article  CAS  Google Scholar 

  • WHO (2020) World malaria report: 20 years of global progress and challenges. World Health Organization, Geneva. ISBN: 978-92-4-001579-1. https://www.who.int/publications/i/item/9789240015791

    Google Scholar 

  • Wilke A, Nimmo D, John O, Kojin B, Capurro M, Marrelli M (2009) Mini-review: genetic enhancements to the sterile insect technique to control mosquito populations. Asia Pac J Mol Biol Biotechnol 17(3):65–74

    Google Scholar 

  • Yamada H, Benedict M, Malcolm C, Oliva C, Soliban S, Gilles J (2012) Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J 11:208–219. https://doi.org/10.1186/1475-2875-11-208

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elaagip, A., Adedapo, A. (2021). Three Decades of Malaria Vector Control in Sudan: The Plausible Role of Sterile Insect Technique (SIT). In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_6

Download citation

Publish with us

Policies and ethics