Skip to main content

Genetic Improvements to the Sterile Insect Technique (SIT) for the Control of Mosquito Population

  • Chapter
  • First Online:
Genetically Modified and other Innovative Vector Control Technologies

Abstract

Mosquito-borne diseases are becoming a major health problem worldwide. At present, the principal method of controlling these diseases entirely depends on the mosquito vector control strategies. However, traditional control methods which are focussed on reducing mosquito populations through environmental management and the application of insecticides are largely ineffective. Hence, various control methods, including the release of sterile insect technique (SIT), have been proposed for the reduction of the mosquito population. As a species-specific control strategy, SIT offers considerable environmental benefits and a chemical-free option for insect control. However, the application of the SIT to mosquito control consistently suffered from lack of efficient sexing system, high fitness cost and operational difficulty in ionizing radiation, density-dependent nature of the target mosquito population and various other technical issues. The intervention of genetic engineering has led to several improvements in the operation or security of SIT programmes. The advent of mosquito transgenesis has paved the way for novel approaches in mosquito control. One possibility is a release of insects carrying dominant lethal (RIDL) strategy by engineering self-limiting gene, which offers solutions for many drawbacks of traditional SIT by providing genetic sterilization, genetic sexing, genetic containment and provision of genetic markers while maintaining its environmentally benign and species-specific utility. The success of this strategy often depends on how genetic modification affects the fitness of the mosquitoes. With several improvements and modifications allowing minimum fitness load, RIDL is now available for a wide range of mosquitoes such as Aedes aegypti, Aedes albopictus and Anopheles stephensi with field-testing possibilities. However, with solid epidemiological evidence and community support, widespread implementation of these strategies might reverse the current alarming global mosquito vector-borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alphey L (2002) Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32(10):1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Alphey LS (2007) Engineering insects for the sterile insect technique. In: Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 51–60

    Chapter  Google Scholar 

  • Alphey L, Oxitec Ltd. (2015) Expression system for insect pest control. US patent no. 9121036

    Google Scholar 

  • Alphey L, Baker P, Burton RS et al (2006) Genetic technologies to enhance the sterile insect technique (SIT). In: Fruit flies of economic importance: from basic to applied knowledge. Proc. 7th intl. symp. fruit flies of economic importance, pp 10–15

    Google Scholar 

  • Alphey L, Benedict M, Bellini R et al (2010) Sterile insect methods for control of mosquito-borne diseases: an analysis. Vector-Borne Zoonotic Dis 10(3):295–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Axtell RC, Arends JJ (1990) Ecology and management of arthropod pests of poultry. Annu Rev Entomol 35(1):101–126

    Article  CAS  PubMed  Google Scholar 

  • Balestrino F, Puggioli A, Carrieri M et al (2017) Quality control methods for Aedes albopictus sterile male production. PLoS Negl Trop Dis 11(9):e0005881

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargielowski I, Nimmo D, Alphey L, Koella JC et al (2011) Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS One 6(6):e20699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19(8):349–355

    Article  PubMed  Google Scholar 

  • Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402(6760):370–371

    Article  CAS  PubMed  Google Scholar 

  • Breeland SG, Jeffery GM, Lofgren CS, Weidhaas DE (1974) Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. I. Characteristics of the test site and the natural population. Am J Trop Med Hyg 23(2):74–281

    Article  Google Scholar 

  • Bruno Wilke AB et al (2009) Mini-review: genetic enhancements to the sterile insect technique to control mosquito population. Asia Pac J Mol Biol Biotechnol 17(3):65–74

    Google Scholar 

  • Bryk J, Reeves RG, Reed FA, Denton JA (2017) Transcriptional effects of a positive feedback circuit in Drosophila melanogaster. BMC Genomics 18(1):1–14

    Article  Google Scholar 

  • Bushland RC, Lindquist AW, Knipling EF (1955) Eradication of screw-worms through. Release of sterilized males. Science 122:287–288

    Article  CAS  PubMed  Google Scholar 

  • Carvalho DO, McKemey AR, Garziera L (2015) Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis 9(7):e0003864

    Article  PubMed  PubMed Central  Google Scholar 

  • Catteruccia F, Godfray HC, Crisanti A (2003) Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299(5610):1225–1227

    Article  CAS  PubMed  Google Scholar 

  • Celli A (1901a) Epidemiologia della malaria secondo le recenti vedute biologiche. Annali dell’Istituto di Igiene Sperimentale 11:44–95

    Google Scholar 

  • Celli A (1901b) Sulla nuova profilassi della malaria. Annali dell’Istituto di Igiene Sperimentale 11:97–141

    Google Scholar 

  • Chernin E (1983) Sir Patrick Manson’s studies on the transmission and biology of filariasis. J Infect Dis 5(1):148–166

    CAS  Google Scholar 

  • Coquerel C (1858) Note sur des larves appartenant à une espece nouvelle de diptere, (Lucilia hominivorax) développée dans les sinus frontaux de l’homme à Cayenne. Annls Soc enl Fr 6(3):171–176

    Google Scholar 

  • Cuervo-Parra JA, Cortés TR, Ramirez-Lepe M (2016) Mosquito-borne diseases, pesticides used for mosquito control and development of resistance to insecticides. In: Trdan S (ed) Insecticides resistance. IntechOpen, Rijeka, pp 111–134

    Google Scholar 

  • Curtis CF (2005) Review of previous applications of genetics to vector control. Frontis, 33–43

    Google Scholar 

  • Dame DA, Lofgren CS, Ford HR, Boston MD, Baldwin KF, Jeffery GM (1974) Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. II. Methods of rearing, sterilization, and distribution. Am J Trop Med Hyg 23(2):282–287

    Article  CAS  PubMed  Google Scholar 

  • De Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L et al (2011) Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci 108(12):4772–4775

    Article  Google Scholar 

  • Facchinelli L, Valerio L, Ramsey JM, Gould F, Walsh RK, Bond G et al (2013) Field cage studies and progressive evaluation of genetically-engineered mosquitoes. PLoS Negl Trop Dis 7(1):e2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferroni E, Jefferson T, Gachelin G (2012) Angelo Celli and research on the prevention of malaria in Italy a century ago. J R Soc Med 105(1):35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Franz AW, Jasinskiene N, Sanchez-Vargas I, Isaacs AT, Smith MR, Khoo CC et al (2011) Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and φc31 site-directed recombination. Insect Mol Biol 20(5):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC et al (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25(3):353–357

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P (2010) Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A 107(10):4550–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC et al (2005) A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 23(4):453–456

    Article  CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89(12):5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10(6):597–604

    Article  CAS  PubMed  Google Scholar 

  • Haghighat-Khah RE, Harvey-Samuel T, Basu S, StJohn O, Scaife S, Verkuijl S et al (2019) Engineered action at a distance: blood-meal-inducible paralysis in Aedes aegypti. PLoS Negl Trop Dis 13(9):e0007579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46(1):511–543

    Article  CAS  PubMed  Google Scholar 

  • Handler AM (2002) Prospects for using genetic transformation for improved SIT and new biocontrol methods. Genetica 116(1):137–149

    Article  CAS  PubMed  Google Scholar 

  • Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA et al (2011) Field performance of engineered male mosquitoes. Nat Biotechnol 29(11):1034–1037

    Article  CAS  PubMed  Google Scholar 

  • Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA et al (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30(9):9–11

    Article  Google Scholar 

  • Heikal AA, Hess ST, Baird GS, Tsien RY, Webb WW (2000) Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (citrine). Proc Natl Acad Sci U S A 97(22):11996–12001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich JC, Scott MJ (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci 97(15):8229–8232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helinski MEH, Parke AG, Knols BG (2009) Radiation biology of mosquitoes. Malar J 8(S2):S6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendrichs J, Robinson AS, Cayol JP, Enkerlin W (2002) Medfly areawide sterile insect technique programmes for prevention, suppression or eradication: the importance of mating behavior studies. Fla Entomol 85(1):1–13

    Article  Google Scholar 

  • Higgs S, Lewis DL (2000) Green fluorescent protein (GFP) as a marker for transgenic insects. In: Insect transgenesis. CRC Press, Boca Raton, FL, pp 101–120

    Google Scholar 

  • Higgs S, Traul D, Davis BS, Kamrud KI, Wilcox CL, Beaty BJ (1996) Green fluorescent protein expressed in living mosquitoes—without the requirement of transformation. BioTechniques 21(4):660–664

    Article  CAS  PubMed  Google Scholar 

  • Irvin N, Hoddle MS, O’Brochta DA, Carey B, Atkinson PW (2004) Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc Natl Acad Sci 101(3):891–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417(6887):452–455

    Article  CAS  PubMed  Google Scholar 

  • Juan-Blasco M, Sabater-Munoz B, Pla I, Argilés R, Castañera P, Jacas JA et al (2014) Estimating SIT-driven population reduction in the Mediterranean fruit fly, Ceratitis capitata from sterile mating. Bull Entomol Res 104(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Kittayapong P, Kaeothaisong NO, Ninphanomchai S, Limohpasmanee W (2018) Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasites Vectors 11(2):73–83

    CAS  Google Scholar 

  • Kittayapong P, Ninphanomchai S, Limohpasmanee W, Chansang C, Chansang U, Mongkalangoon P (2019) Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl Trop Dis 13(10):e0007771

    Article  PubMed  PubMed Central  Google Scholar 

  • Knipling EF (1979) The basic principles of insect population suppression and management, Agriculture Handbook 512. US Dept. of Agriculture, Washington, DC

    Google Scholar 

  • Kokoza V, Ahmed A, Wimmer EA, Raikhel AS (2001) Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Insect Biochem Mol 31(12):1137–1143

    Article  CAS  Google Scholar 

  • Labbé GM, Scaife S, Morgan SA, Curtis ZH, Alphey L (2012) Female-specific flightless (fsRIDL) phenotype for control of Aedes albopictus. PLoS Negl Trop Dis 6(7):e1724

    Article  PubMed  PubMed Central  Google Scholar 

  • LaBrecque GC, Bowman MC, Patterson RS, Seawright JA (1972) Persistence of thiotepa and tepa in pupae and adults of Culex pipiens fatigans Wiedemann. Bull World Health Organ 47(5):675–676. http://www.ncbi.nlm.nih.gov/pubmed/4121670. Accessed 10 Apr 2020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216(5113):383–384

    Article  CAS  PubMed  Google Scholar 

  • Le Prince JAA (1916) Mosquito control in Panama. The eradication of malaria and yellow fever in Cuba and Panama. JAMA LXVI:1652

    Article  Google Scholar 

  • Lyman RF, Lawrence F, Nuzhdin SV, Mackay TF (1996) Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143(1):277–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchi A, Munstermann LE (1987) The mosquitoes of Sardinia: species records 35 years after the malaria eradication campaign. Med Vet Entomol 1(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Marinotti O, Jasinskiene N, Fazekas A, Scaife S, Fu G, Mattingly ST (2013) Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi. Malar J 12(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  • Marrelli MT, Moreira CK, Kelly D, Alphey L, Jacobs-Lorena M (2006) Mosquito transgenesis: what is the fitness cost? Trends Parasitol 22(5):197–202

    Article  PubMed  Google Scholar 

  • Morrison NI, Simmons GS, Fu G, O’Connell S, Walker AS, Dafa’alla T et al (2012) Engineered repressible lethality for controlling the pink bollworm, a lepidopteran pest of cotton. PLoS One 7(12):e50922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277(11):8759–8762

    Article  CAS  PubMed  Google Scholar 

  • Oxitec (2019) Oxitec successfully completes first field deployment of 2nd generation friendly Aedes aegypti technology. Oxitec. Archived from the original on 13 Aug 2019. https://www.prnewswire.co.uk/news-releases/oxitec-successfully-completes-first-field-deployment-of-2nd-generation-friendly-tm-aedes-aegypti-technology-829366749.html. Accessed 29 Apr 2020

  • Perera OP, Harrell RA, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11(4):291–297

    Article  CAS  PubMed  Google Scholar 

  • Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G et al (2007) Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkerton AC, Michel K, O’Brochta DA, Atkinson PW (2000) Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol Biol 9(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Plautz JD, Day RN, Dailey GM, Welsh SB, Hall JC, Halpain S et al (1996) Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene 173(1):83–87

    Article  CAS  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    Article  CAS  PubMed  Google Scholar 

  • Qsim M, Ashfaq UA, Yousaf MZ, Masoud M, Rasul I, Noor N et al (2017) Genetically modified Aedes aegypti to control dengue: a review. Crit Rev Eukaryot Gene Expr 27:331–340

    Article  PubMed  Google Scholar 

  • Rodems SM, Friesen PD (1993) The hr5 transcriptional enhancer stimulates early expression from the Autographa californica nuclear polyhedrosis virus genome but is not required for virus replication. J Virol 67(10):5776–5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues F, van Hemert M, Steensma HY, Côrte-Real M, Leão C (2001) Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae. J Bacteriol 183(12):3791–3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues FG, Oliveira SB, Rocha BC, Moreira LA (2006) Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element. Mem Inst Oswaldo Cruz 101(7):755–757

    Article  CAS  PubMed  Google Scholar 

  • Ross R (1897) On some peculiar pigmented cells found in two mosquitos fed on malarial blood. Br Med J 2(1929):1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schetelig MF, Handler AM (2012) Strategy for enhanced transgenic strain development for embryonic conditional lethality in Anastrepha suspensa. Proc Natl Acad Sci 109(24):9348–9353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biol 7(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Schetelig MF, Targovska A, Meza JS, Bourtzis K, Handler AM (2016) Tetracycline-suppressible female lethality and sterility in the Mexican fruit fly, Anastrepha ludens. Insect Mol Biol 25(4):500–508

    Article  CAS  PubMed  Google Scholar 

  • Schliekelman P, Gould F (2000) Pest control by the introduction of a conditional lethal trait on multiple loci: potential, limitations, and optimal strategies. J Econ Entomol 93(6):1543–1565

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Long SJ, Walker AS, Bolton M, Collins HL, Revuelta L (2020) First field release of a genetically engineered, self-limiting agricultural pest insect: evaluating its potential for future crop protection. Front Bioeng Biotechnol 29(7):48215

    Google Scholar 

  • Tan A, Fu G, Jin L, Guo Q, Li Z, Niu B et al (2013) Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proc Natl Acad Sci 110(17):6766–6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287(5462):2474–2476

    Article  CAS  PubMed  Google Scholar 

  • Thomé RCA, Yang HM, Esteva L (2010) Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math Biosci 223(1):12–23

    Article  PubMed  Google Scholar 

  • Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG (2000) Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 93(1):123–135

    Article  CAS  PubMed  Google Scholar 

  • Walton HJ (1922) The prevention of malaria in the federated Malay states: a record of twenty years progress. Nature 109(2733):334–335

    Article  Google Scholar 

  • Williams LL (1963) Malaria eradication in the United States. Am J Public Health 53(1):17–21

    Article  Google Scholar 

  • Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ et al (2020) The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis 14(1):e0007831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyss JH (2000) Screwworm eradication in the Americas. Ann N Y Acad Sci 916(1):186–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge the Accelerating Higher Education Expansion and Development (AHEAD) operation for financial support to carry out research studies on high-tech approaches to control dengue by genetic engineering mosquito vector Ae. aegypti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dassanayake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dilani, P.V.D., Gunawardene, Y.I.N.S., Dassanayake, R.S. (2021). Genetic Improvements to the Sterile Insect Technique (SIT) for the Control of Mosquito Population. In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_3

Download citation

Publish with us

Policies and ethics