Skip to main content

Nanosized Emulsion System: A Comprehensive Tool Towards Controlling Vector Mosquito Populations

  • Chapter
  • First Online:
Genetically Modified and other Innovative Vector Control Technologies

Abstract

In the current scenario, the world is facing a massive struggle with mosquito-borne diseases. These dipteran insects are the major cause of vector-borne diseases prevailing in society in turn creating havoc through morbidity and mortality. Mosquito poses a significant threat to human society, and therefore this scenario urges the proper combating strategy towards these deadly vectors. The current advancement in the field of nanotechnology provides the solution towards this issue in form of nanoemulsion-based pesticides. These nanometric emulsion systems possess a significant impact on portraying its ovicidal, larvicidal, pupicidal, and adulticidal activities against the deadly species of Anopheles, Culex, and Aedes. The nanoemulsion is a colloidal system comprising of the organic phase and aqueous phase, wherein the active ingredient present in the organic phase provides the potential efficacy to the system. Various research studies conducted in terms of screening of mosquitocidal efficacy of nanoemulsion prove the potent efficacy of the nanoemulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AlSalhi M, Elumalai K, Devanesan S, Govindarajan M, Krishnappa K, Maggi F (2020) The aromatic ginger Kaempferia galanga L. (Zingiberaceae) essential oil and its main compounds are effective larvicidal agents against Aedes vittatus and Anopheles maculatus without toxicity on the non-target aquatic fauna. Ind Crop Prod 158:113012

    Article  CAS  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Panneerselvam C, Madhiyazhagan P, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89(1):249–256

    Article  Google Scholar 

  • Anjali CH, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73(8):1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68(2):158–163

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805

    Article  PubMed  Google Scholar 

  • Binks BP (1998) Modern aspects of emulsion science. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  • Destree C, Nagy JB (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv Colloid Interf Sci 123:353–367

    Article  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114(4):1519–1529

    Article  PubMed  Google Scholar 

  • El-Aasser MS, Sudol ED (2004) Miniemulsions: overview of research and applications. JCT Res 1(1):21–32

    Google Scholar 

  • Floury J, Desrumaux A, Axelos MA, Legrand J (2003) Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 58(3):227–238

    Article  Google Scholar 

  • Forgiarini A, Esquena J, González C, Solans C (2000) Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. In: Trends in colloid and interface science XIV. Springer, Berlin, pp 36–39

    Chapter  Google Scholar 

  • Gasco MR, Priano L, Zara GP (2009) Solid lipid nanoparticles and microemulsions for drug delivery: the CNS. In: Progress in brain research, vol 180. Elsevier, Amsterdam, pp 181–192

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Kumar RS, Shiny PJ, Anjali CH, Jerobin J, Goshen KM, Magdassi S, Chandrasekaran N (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20(4):2593–2602

    Article  Google Scholar 

  • Landfester K, Eisenblätter J, Rothe R (2004) Preparation of polymerizable miniemulsions by ultrasonication. JCT Res 1(1):65–68

    CAS  Google Scholar 

  • Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: formation and applications. Curr Opin Colloid Interface Sci 17(5):290–296

    Article  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Article  PubMed  Google Scholar 

  • Mishra P, Suresh Kumar RS, Jerobin J, Thomas J, Mukherjee A, Chandrasekaran N (2014) Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita. Biotechnol Appl Biochem 61(5):611–619

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Samuel MK, Reddy R, Tyagi BK, Mukherjee A, Chandrasekaran N (2018) Environmentally benign nanometric neem-laced urea emulsion for controlling mosquito population in environment. Environ Sci Pollut Res 25(3):2211–2230

    Article  CAS  Google Scholar 

  • Mohafrash SM, Fallatah SA, Farag SM, Mossa ATH (2020) Mentha spicata essential oil nanoformulation and its larvicidal application against Culex pipiens and Musca domestica. Ind Crop Prod 157:112944

    Article  CAS  Google Scholar 

  • Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Jiang-Shiou H, Palanisamy MK, Jayapal S, Suresh U (2015) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6):2243–2253

    Article  PubMed  Google Scholar 

  • Nakajima H (1997) Microemulsions in cosmetics. In: Solans C, Kunieda H (eds) Industrial applications of microemulsions. Marcel Dekker, New York, pp 175–197

    Google Scholar 

  • Oliveira AEMFM, Bezerra DC, Duarte JL, Cruz RAS, Souto RNP, Ferreira RMA, Nogueira J, Conceição EC, Leitão S, Bizzo HR et al (2016) Essential oil from Pterodon emarginatus as a promising natural raw material for larvicidal nanoemulsions against a tropical disease vector. Sustain Chem Pharm 6:1–9

    Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111(6):2241–2251

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). Asian Pac J Trop Med 6(2):102–109

    Article  CAS  PubMed  Google Scholar 

  • Pavel FM (2004) Microemulsion polymerization. J Dispers Sci Technol 25(1):1–16

    Article  CAS  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2(7):574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Rang MJ, Miller CA (1999) Spontaneous emulsification of oils containing hydrocarbon, nonionic surfactant, and oleyl alcohol. J Colloid Interface Sci 209(1):179–192

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ABL, Lopes RM, Rabelo ÉM, Tomazi R, Santos LL, Brandão LB. Search articles by ‘Lethícia Barreto Brandão’ Brandão LB, Faustino CG, Farias ALF, dos Santos CBR, de Castro Cantuária P, Galardo AKR, da Silva de Almeida SSM (2020) Development of nano-emulsions based on Ayapana triplinervis for the control of Aedes aegypti larvae. bioRxiv. https://doi.org/10.1101/2020.07.09.194985. PPR: PPR185951

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  CAS  PubMed  Google Scholar 

  • Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. J Colloid Interface Sci 26(1):70–74

    Article  CAS  Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10(3–4):102–110

    Article  CAS  Google Scholar 

  • Sonneville-Aubrun O, Simonnet JT, L’alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interf Sci 108:145–149

    Article  Google Scholar 

  • Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104(3):393–402

    Article  CAS  PubMed  Google Scholar 

  • Sundararajan B, Moola AK, Vivek K, Kumari BR (2018) Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb Pathog 125:475–485

    Article  CAS  PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Kumar PM, Jayapal S, Devakumar D, Chandramohan B, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114(4):1551–1562

    Article  PubMed  Google Scholar 

  • Suresh U, Murugan K, Panneerselvam C, Cianfaglione K, Wang L, Maggi F (2020) Encapsulation of sea fennel (Crithmum maritimum) essential oil in nanoemulsion and SiO2 nanoparticles for treatment of the crop pest Spodoptera litura and the dengue vector Aedes aegypti. Ind Crop Prod 158:113033

    Article  CAS  Google Scholar 

  • Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interf Sci 108:303–318

    Article  Google Scholar 

  • Tahghighi A, Maleki-Ravasan N, Djadid ND, Alipour H, Ahmadvand R, Karimian F, Yousefinejad S (2019) GC–MS analysis and anti-mosquito activities of Juniperus virginiana essential oil against Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed 9(4):168

    Article  CAS  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(5):1775–1785

    Article  PubMed  Google Scholar 

  • Walstra P (1996) Emulsion stability. In: Becher P (ed) Encyclopaedia of emulsion technology. Marcel Dekker, New York, pp 1–62

    Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Ymeti A, Greve J, Lambeck PV, Wink T, van Hövell SW, Beumer TA, Kanger JS (2007) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7(2):394–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge REVA University, Bengaluru, and VIT University, Vellore, for all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, P., Chandrasekaran, N., Mukherjee, A., Tyagi, B.K. (2021). Nanosized Emulsion System: A Comprehensive Tool Towards Controlling Vector Mosquito Populations. In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_18

Download citation

Publish with us

Policies and ethics