Skip to main content

Abstract

Detection of arthropod-borne (arbo)viruses is a fundamental element of mosquito surveillance programmes. Moreover, recent advances in modifying mosquitoes for managing arbovirus vector populations rely on sensitive arbovirus detection methods, which are applied at various stages of development, evaluation and production of modified mosquitoes. An increasingly wide range of mosquito trapping, sampling and testing options are available. Although virus culture will remain important for isolating viruses for research and reference purposes, the widespread use and application of real-time reverse transcription polymerase chain reaction (RT-PCR) offers rapid and cost-effective workflows for detecting arbovirus nucleic acid. Advances in next-generation sequencing (NGS) techniques and bioinformatics approaches have also enabled increasingly rapid, accurate and inexpensive arbovirus genome sequencing that can be employed following virus detection using conventional methods or used independently as a stand-alone platform. Unbiased NGS is also a powerful tool for arbovirus discovery and metagenomics. Continued advances in arbovirus detection methods and approaches are expected to provide ever more sophisticated tools for controlling and responding to the threat of pathogenic arboviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemayehu D, Reyes T, Haas-Stapleton EJ (2018) Field evaluation of a redesigned oviposition trap to monitor gravid invasive Aedes mosquitoes in a suburban environment. J Am Mosq Control Assoc 34(1):67–69

    Article  PubMed  Google Scholar 

  • Alera MT, Hermann L, Tac-An IA, Klungthong C, Rutvisuttinunt W, Manasatienkij W, Villa D, Thaisomboonsuk B, Velasco JM, Chinnawirotpisan P, Lago CB, Roque VG Jr, Macareo LR, Srikiatkhachorn A, Fernandez S, Yoon IK (2015) Zika virus infection, Philippines, 2012. Emerg Infect Dis 21:722–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrusch A, Dabrowski PW, Klenner J, Tausch SH, Kohl C, Osman AA, Renard BY, Nitsche A (2018) PAIPline: pathogen identification in metagenomic and clinical next generation sequencing samples. Bioinformatics 34(17):i715–i721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balingit JC, Carvajal TM, Saito-Obata M, Gamboa M, Nicolasora AD, Sy AK, Oshitani H, Watanabe K (2020) Surveillance of dengue virus in individual Aedes aegypti mosquitoes collected concurrently with suspected human cases in Tarlac City, Philippines. Parasit Vectors 13(1):594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balm MN, Lee CK, Lee HK, Chiu L, Koay ES, Tang JW (2012) A diagnostic polymerase chain reaction assay for Zika virus. J Med Virol 84(9):1501–1505

    Article  CAS  PubMed  Google Scholar 

  • Barros SC, Ramos F, Zé-Zé L, Alves MJ, Fagulha T, Duarte M, Henriques M, Luís T, Fevereiro M (2013) Simultaneous detection of West Nile and Japanese encephalitis virus RNA by duplex TaqMan RT-PCR. J Virol Methods 193(2):554–557

    Article  CAS  PubMed  Google Scholar 

  • Batovska J, Lynch SE, Rodoni BC, Sawbridge TI, Cogan NO (2017) Metagenomic arbovirus detection using MinION nanopore sequencing. J Virol Methods 249:79–84

    Article  CAS  PubMed  Google Scholar 

  • Batovska J, Lynch SE, Cogan NOI, Brown K, Darbro JM, Kho EA, Blacket MJ (2018) Effective mosquito and arbovirus surveillance using metabarcoding. Mol Ecol Resour 18(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Batovska J, Mee PT, Lynch SE, Sawbridge TI, Rodoni BC (2019) Sensitivity and specificity of metatranscriptomics as an arbovirus surveillance tool. Sci Rep 9(1):19398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaty BJ, Calisher CH, Shope RE (1995) Arboviruses. In: Lennette EH, Lennette DA, Lennette ET (eds) Diagnostic procedures for viral, rickettsial and chlamydial infections, 7th edn. American Public Health Association, Washington, DC, pp 189–212

    Google Scholar 

  • Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98(6):236–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bialosuknia SM, Tan Y, Zink SD, Koetzner CA, Maffei JG, Halpin RA, Muller E, Novatny M, Shilts M, Fedorova NB, Amedeo P, Das SR, Pickett B, Kramer LD, Ciota AT (2019) Evolutionary dynamics and molecular epidemiology of West Nile virus in New York state: 1999–2015. Virus Evol 5(2):vez020

    Article  PubMed  PubMed Central  Google Scholar 

  • Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T, Eloit M, Busquets N (2020) Viromics on honey-baited FTA cards as a new tool for the detection of circulating viruses in mosquitoes. Viruses 12(3):274

    Article  CAS  PubMed Central  Google Scholar 

  • Blasdell KR, Widen SG, Diviney SM, Firth C, Wood TG, Guzman H, Holmes EC, Tesh RB, Vasilakis N, Walker PJ (2014) Koolpinyah and Yata viruses: two newly recognised ephemeroviruses from tropical regions of Australia and Africa. Vet Microbiol 174(3–4):547–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD (2010) C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4(10):e856

    Article  PubMed  PubMed Central  Google Scholar 

  • Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6(8):e1760

    Article  PubMed  PubMed Central  Google Scholar 

  • Briese T, Williams DT, Kapoor V, Diviney SM, Certoma A, Wang J, Johansen CA, Chowdhary R, Mackenzie JS, Lipkin WI (2016) Analysis of arbovirus isolates from Australia identifies novel bunyaviruses including a Mapputta group virus from Western Australia that links Gan Gan and Maprik viruses. PLoS One 11(10):e0164868

    Article  PubMed  PubMed Central  Google Scholar 

  • Broom AK, Hall RA, Johansen CA, Oliveira N, Howard MA, Lindsay MD, Kay BH, Mackenzie JS (1998) Identification of Australian arboviruses in inoculated cell cultures using monoclonal antibodies in ELISA. Pathology 30(3):286–288

    Article  CAS  PubMed  Google Scholar 

  • Burkhalter KL, Lindsay R, Anderson R, Dibernardo A, Fong W, Nasci RS (2006) Evaluation of commercial assays for detecting West Nile virus antigen. J Am Mosq Control Assoc 22(1):64–69

    Article  PubMed  Google Scholar 

  • Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89(10):766–774, 774A-774E

    Article  PubMed  PubMed Central  Google Scholar 

  • Castillo-Olivares J, Wood J (2004) West Nile virus infection of horses. Vet Res 35(4):467–483

    Article  PubMed  Google Scholar 

  • Chandler JA, Liu RM, Bennett SN (2015) RNA shotgun metagenomic sequencing of Northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front Microbiol 6:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao DY, Davis BS, Chang GJ (2007) Development of multiplex real-time reverse transcriptase PCR assays for detecting eight medically important flaviviruses in mosquitoes. J Clin Microbiol 45(2):584–589

    Article  CAS  PubMed  Google Scholar 

  • Coffey LL, Page BL, Greninger AL, Herring BL, Russell RC, Doggett SL, Haniotis J, Wang C, Deng X, Delwart EL (2014) Enhanced arbovirus surveillance with deep sequencing: identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes. Virology 448:146–158

    Article  CAS  PubMed  Google Scholar 

  • Conceição-Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, Deboutte W, Yinda CK, Lavigne R, Maes P, Van Ranst M, Heylen E, Matthijnssens J (2015) Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci Rep 5:16532

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel LK (2006) Traps and trapping techniques for adult mosquito control. J Am Mosq Control Assoc 22(3):490–496

    Article  Google Scholar 

  • Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360(24):2536–2543

    Article  CAS  PubMed  Google Scholar 

  • Fauver JR, Akter S, Morales AIO, Black WC IV, Rodriguez AD, Stenglein MD, Ebel GD, Weger-Lucarelli J (2019) A reverse-transcription/RNase H based protocol for depletion of mosquito ribosomal RNA facilitates viral intrahost evolution analysis, transcriptomics and pathogen discovery. Virology 528:181–197

    Article  CAS  PubMed  Google Scholar 

  • Faye O, Faye O, Dupressoir A, Weidmann M, Ndiaye M, Alpha Sall A (2008) One-step RT-PCR for detection of Zika virus. J Clin Virol 43(1):96–101

    Article  CAS  Google Scholar 

  • Faye O, Faye O, Diallo D, Diallo M, Weidmann M, Sall AA (2013) Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J 10:311

    Article  PubMed  PubMed Central  Google Scholar 

  • Flygare S, Simmon K, Miller C, Qiao Y, Kennedy B, Di Sera T, Graf EH, Tardif KD, Kapusta A, Rynearson S, Stockmann C, Queen K, Tong S, Voelkerding KV, Blaschke A, Byington CL, Jain S, Pavia A, Ampofo K, Eilbeck K, Marth G, Yandell M, Schlaberg R (2016) Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling. Genome Biol 17(1):111

    Article  PubMed  PubMed Central  Google Scholar 

  • Foord AJ, Boyd V, White JR, Williams DT, Colling A, Heine HG (2014) Flavivirus detection and differentiation by a microsphere array assay. J Virol Methods 203:65–72

    Article  CAS  PubMed  Google Scholar 

  • Frost MJ, Zhang J, Edmonds JH, Prow NA, Gu X, Davis R, Hornitzky C, Arzey KE, Finlaison D, Hick P, Read A, Hobson-Peters J, May FJ, Doggett SL, Haniotis J, Russell RC, Hall RA, Khromykh AA, Kirkland PD (2012) Characterization of virulent West Nile virus Kunjin strain, Australia, 2011. Emerg Infect Dis 18(5):792–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajanana A, Rajendran R, Thenmozhi V, Philip Samuel P, Tsai TF, Reuben R (1995) Comparative evaluation of bioassay and ELISA for detection of Japanese encephalitis virus in field collected mosquitoes. Southeast Asian J Trop Med Public Health 26:91–97

    CAS  PubMed  Google Scholar 

  • Gaunt MW, Gould EA (2005) Rapid subgroup identification of the flaviviruses using degenerate primer E-gene RT-PCR and site specific restriction enzyme analysis. J Virol Methods 128:113–127

    Article  CAS  PubMed  Google Scholar 

  • Gimnig JE, Walker ED, Otieno P, Kosgei J, Olang G, Ombok M, Williamson J, Marwanga D, Abong’o D, Desai M, Kariuki S, Hamel MJ, Lobo NF, Vulule J, Bayoh MN (2013) Incidence of malaria among mosquito collectors conducting human landing catches in western Kenya. Am J Trop Med Hyg 88(2):301–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Giry C, Roquebert B, Li-Pat-Yuen G, Gasque P, Jaffar-Bandjee MC (2017) Improved detection of genus-specific alphavirus using a generic TaqMan® assay. BMC Microbiol 17(1):164

    Article  PubMed  PubMed Central  Google Scholar 

  • Glushakova LG, Alto BW, Kim MS, Hutter D, Bradley A, Bradley KM, Burkett-Cadena ND, Benner SA (2019) Multiplexed kit based on Luminex technology and achievements in synthetic biology discriminates Zika, chikungunya, and dengue viruses in mosquitoes. BMC Infect Dis 19(1):418

    Article  PubMed  PubMed Central  Google Scholar 

  • Govella NJ, Chaki PP, Geissbuhler Y, Kannady K, Okumu F, Charlwood JD, Anderson RA, Killeen GF (2009) A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar J 8:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Grubaugh ND, Sharma S, Krajacich BJ, Fakoli LS III, Bolay FK, Diclaro JW II, Johnson WE, Ebel GD, Foy BD, Brackney DE (2015) Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape. PLoS Negl Trop Dis 9(3):e0003628

    Article  PubMed  PubMed Central  Google Scholar 

  • Grywna K, Kupfer B, Panning M, Drexler JF, Emmerich P, Drosten C, Kummerer BM (2010) Detection of all species of the genus alphavirus by reverse transcription-PCR with diagnostic sensitivity. J Clin Microbiol 48(9):3386–3387

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu W, Novak RJ (2004) Short report: Detection probability of arbovirus infection in mosquito populations. Am J Trop Med Hyg 71(5):636–638

    Article  PubMed  Google Scholar 

  • Gulland A (2016) Zika virus is a global public health emergency, declares WHO. BMJ 352:i657

    Article  PubMed  Google Scholar 

  • Hall-Mendelin S, Allcock R, Kresoje N, van den Hurk AF, Warrilow D (2013) Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing. PLoS One 8(2):e58026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasebe F, Parquet MC, Pandey BD, Mathenge EG, Morita K, Balasubramaniam V, Saat Z, Yusop A, Sinniah M, Natkunam S, Igarashi A (2002) Combined detection and genotyping of Chikungunya virus by a specific reverse transcription-polymerase chain reaction. J Med Virol 67(3):370–374

    Article  CAS  PubMed  Google Scholar 

  • Hayes EB, Gubler DJ (2006) West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med 57:181–194

    Article  CAS  PubMed  Google Scholar 

  • Houldcroft CJ, Beale MA, Breuer J (2017) Clinical and biological insights from viral genome sequencing. Nat Rev Microbiol 15(3):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hue KD, Tuan TV, Thi HT, Bich CT, Anh HH, Wills BA, Simmons CP (2011) Validation of an internally controlled one-step real-time multiplex RT-PCR assay for the detection and quantitation of dengue virus RNA in plasma. J Virol Methods 177(2):168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen HJ, Liem M, Jong-Raadsen SA, Dufour S, Weltzien FA, Swinkels W, Koelewijn A, Palstra AP, Pelster B, Spaink HP, Thillart GEVD, Dirks RP, Henkel CV (2017) Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci Rep 7(1):7213

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansen CA, van den Hurk AF, Ritchie SA, Zborowski P, Nisbet DJ, Paru R, Bockarie MJ, Macdonald J, Drew AC, Khromykh TI, Mackenzie JS (2000) Isolation of Japanese encephalitis virus from mosquitoes (Diptera: Culicidae) collected in the Western Province of Papua New Guinea, 1997–1998. Am J Trop Med Hyg 62(5):631–638

    Article  CAS  PubMed  Google Scholar 

  • Johnson DJ, Ostlund EN, Pedersen DD, Schmitt BJ (2001) Detection of North American West Nile virus in animal tissue by a reverse transcription-nested polymerase chain reaction assay. Emerg Infect Dis 7(4):739–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BW, Russell BJ, Lanciotti RS (2005) Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol 43(10):4977–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson N, Voller K, Phipps LP, Mansfield K, Fooks AR (2012) Rapid molecular detection methods for arboviruses of livestock of importance to northern Europe. J Biomed Biotechnol 2012:719402

    Article  PubMed  Google Scholar 

  • Kauffman EB, Jones SA, Dupuis AP II, Ngo KA, Bernard KA, Kramer LD (2003) Virus detection protocols for West Nile virus in vertebrate and mosquito specimens. J Clin Microbiol 41(8):3661–3667

    Article  PubMed  PubMed Central  Google Scholar 

  • Keven JB, Katusele M, Vinit R, Koimbu G, Vincent N, Thomsen EK, Karl S, Reimer LJ, Walker ED (2019) Species abundance, composition, and nocturnal activity of female Anopheles (Diptera: Culicidae) in malaria-endemic villages of Papua New Guinea: assessment with barrier screen sampling. Malar J 18(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko HY, Salem GM, Chang GJ, Chao DY (2020) Application of next-generation sequencing to reveal how evolutionary dynamics of viral population shape dengue epidemiology. Front Microbiol 11:1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi E, Takahashi J (1985) Detection of chikungunya virus antigen in Aedes albopictus mosquitoes by enzyme-linked immunosorbent assay. J Virol Methods 12(3–4):279–285

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Kumar K, Chauhan LS (2011) First dengue virus detection in Aedes albopictus from Delhi, India: its breeding ecology and role in dengue transmission. Trop Med Int Health 16(8):949–954

    Article  PubMed  Google Scholar 

  • Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT (2000) Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38(11):4066–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, Lambert AJ, Campbell GL (2007) Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis 13(5):764–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14(8):1232–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Fang M, Zhou B, Ni H, Shen Q, Zhang H, Han Y, Yin J, Chang W, Xu G, Cao G (2011) Simultaneous detection and differentiation of dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay. Virol J 8:360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew JWK, Selvarajoo S, Tan W, Ahmad Zaki R, Vythilingam I (2019) Gravid oviposition sticky trap and dengue non-structural 1 antigen test for early surveillance of dengue in multi-storey dwellings: study protocol of a cluster randomized controlled trial. Infect Dis Poverty 8(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Liu ZJ, Jing J, Ren JQ, Liu YY, Guo HH, Fan M, Lu HJ, Jin NY (2012) Reverse transcription loop-mediated isothermal amplification for rapid detection of Japanese encephalitis virus in swine and mosquitoes. Vector Borne Zoonotic Dis 12(12):1042–1052

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Jimena B, Bekaert M, Bakheit M, Frischmann S, Patel P, Simon-Loriere E, Lambrechts L, Duong V, Dussart P, Harold G, Fall C, Faye O, Sall AA, Weidmann M (2018) Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype. PLoS Negl Trop Dis 12(5):e0006381

    Article  PubMed  PubMed Central  Google Scholar 

  • Maan S, Maan NS, Belaganahalli MN, Rao PP, Singh KP, Hemadri D, Putty K, Kumar A, Batra K, Krishnajyothi Y, Chandel BS, Reddy GH, Nomikou K, Reddy YN, Attoui H, Hegde NR, Mertens PP (2015) Full-genome sequencing as a basis for molecular epidemiology studies of bluetongue virus in India. PLoS One 10(6):e0131257

    Article  PubMed  PubMed Central  Google Scholar 

  • Maciel-de-Freitas R, Eiras AE, Lourenco-de-Oliveira R (2006) Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 101(3):321–325

    Article  PubMed  Google Scholar 

  • Mansuy JM, Lhomme S, Cazabat M, Pasquier C, Martin-Blondel G, Izopet J (2018) Detection of Zika, dengue and chikungunya viruses using single-reaction multiplex real-time RT-PCR. Diagn Microbiol Infect Dis 92(4):284–287

    Article  CAS  PubMed  Google Scholar 

  • Mathenge EM, Omweri GO, Irungu LW, Ndegwa PN, Walczak E, Smith TA, Killeen GF, Knols BG (2004) Comparative field evaluation of the Mbita trap, the Centers for Disease Control light trap, and the human landing catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg 70(1):33–37

    Article  PubMed  Google Scholar 

  • McHardy AC, Martín HG, Tsirigos A, Hugenholtz P, Rigoutsos I (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Microsoft Premonition (n.d.) Microsoft Research (blog). https://www.microsoft.com/en-us/research/project/project-premonition/. Accessed 29 Jan 2021

  • Mosquito World (n.d.) Mosquito trap reviews 2021. http://www.mosquitoworld.net/mosquito-control/trap-reviews/. Accessed 29 Jan 2021

  • Moureau G, Temmam S, Gonzalez JP, Charrel RN, Grard G, de Lamballerie X (2007) A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis 7(4):467–477

    Article  CAS  PubMed  Google Scholar 

  • Musso D, Bossin H, Mallet HP, Besnard M, Broult J, Baudouin L, Levi JE, Sabino EC, Ghawche F, Lanteri MC, Baud D (2018) Zika virus in French Polynesia 2013–14: anatomy of a completed outbreak. Lancet Infect Dis 18(5):e172–e182

    Article  PubMed  Google Scholar 

  • Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, Bouquet J, Greninger AL, Luk KC, Enge B, Wadford DA, Messenger SL, Genrich GL, Pellegrino K, Grard G, Leroy E, Schneider BS, Fair JN, Martínez MA, Isa P, Crump JA, DeRisi JL, Sittler T, Hackett J Jr, Miller S, Chiu CY (2014) A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 24(7):1180–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos I (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:75–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Parida M, Posadas G, Inoue S, Hasebe F, Morita K (2004) Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol 42(1):257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida MM, Santhosh SR, Dash PK, Tripathi NK, Saxena P, Ambuj S, Sahni AK, Lakshmana Rao PV, Morita K (2006) Development and evaluation of reverse transcription-loop-mediated isothermal amplification assay for rapid and real-time detection of Japanese encephalitis virus. J Clin Microbiol 44(11):4172–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida MM, Santhosh SR, Dash PK, Tripathi NK, Lakshmi V, Mamidi N, Shrivastva A, Gupta N, Saxena P, Babu JP, Rao PV, Morita K (2007) Rapid and real-time detection of chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. J Clin Microbiol 45(2):351–357

    Article  CAS  PubMed  Google Scholar 

  • Patel P, Landt O, Kaiser M, Faye O, Koppe T, Lass U, Sall AA, Niedrig M (2013) Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses. Virol J 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeffer M, Proebster B, Kinney RM, Kaaden OR (1997) Genus-specific detection of alphaviruses by a semi-nested reverse transcription-polymerase chain reaction. Am J Trop Med Hyg 57(6):709–718

    Article  CAS  PubMed  Google Scholar 

  • Pierre V, Drouet MT, Deubel V (1994) Identification of mosquito-borne flavivirus sequences using universal primers and reverse transcription/polymerase chain reaction. Res Virol 145:93–104

    Article  CAS  PubMed  Google Scholar 

  • Pyke AT, Smith IL, van den Hurk AF, Northill JA, Chuan TF, Westacott AJ, Smith GA (2004) Detection of Australasian Flavivirus encephalitic viruses using rapid fluorogenic TaqMan RT-PCR assays. J Virol Methods 117(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Pyke AT, Daly MT, Cameron JN, Moore PR, Taylor CT, Hewitson GR, Humphreys JL, Gair R (2014) Imported zika virus infection from the Cook Islands into Australia, 2014. PLoS Curr 6:ecurrents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e

    PubMed  PubMed Central  Google Scholar 

  • Quan PL, Williams DT, Johansen CA, Jain K, Petrosov A, Diviney SM, Tashmukhamedova A, Hutchison SK, Tesh RB, Mackenzie JS, Briese T, Lipkin WI (2011) Genetic characterization of K13965, a strain of Oak Vale virus from Western Australia. Virus Res 160(1–2):206–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13(5):278–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie SA, Phillips D, Broom A, Mackenzie J, Poidinger M, van den Hurk A (1997) Isolation of Japanese encephalitis virus from Culex annulirostris in Australia. Am J Trop Med Hyg 56(1):80–84

    Article  CAS  PubMed  Google Scholar 

  • Ritchie SA, van den Hurk AF, Zborowski P, Kerlin TJ, Banks D, Walker JA, Lee JM, Montgomery BL, Smith GA, Pyke AT, Smith IL (2007) Operational trials of remote mosquito trap systems for Japanese encephalitis virus surveillance in the Torres Strait, Australia. Vector Borne Zoonotic Dis 7(4):497–506

    Article  PubMed  Google Scholar 

  • Ritchie SA, Cortis G, Paton C, Townsend M, Shroyer D, Zborowski P, Hall-Mendelin S, Van Den Hurk AF (2013) A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J Med Entomol 50(1):185–194

    Article  PubMed  Google Scholar 

  • Rosen L, Gubler D (1974) The use of mosquitoes to detect and propagate dengue viruses. Am J Trop Med Hyg 23(6):1153–1160

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi M, Altan E, Deng X, Barker CM, Fang Y, Coffey LL, Delwart E (2018) Virome of >12 thousand Culex mosquitoes from throughout California. Virology 523:74–88

    Article  CAS  PubMed  Google Scholar 

  • Sambri V, Capobianchi M, Charrel R, Fyodorova M, Gaibani P, Gould E, Niedrig M, Papa A, Pierro A, Rossini G, Varani S, Vocale C, Landini MP (2013) West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment, and prevention. Clin Microbiol Infect 19(8):699–704

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Seco MP, Rosario D, Quiroz E, Guzman G, Tenorio A (2001) A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus. J Virol Methods 95(1–2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Santiago GA, Vázquez J, Courtney S, Matías KY, Andersen LE, Colón C, Butler AE, Roulo R, Bowzard J, Villanueva JM, Muñoz-Jordan JL (2018) Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun 9(1):1391

    Article  PubMed  PubMed Central  Google Scholar 

  • Scaramozzino N, Crance J-M, Jouan A, DeBriel DA, Stoll F, Garin D (2001) comparison of universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol 39(5):1922–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlaberg R, Chiu CY, Miller S, Procop GW, Weinstock G, Professional Practice Committee and Committee on Laboratory Practices of the American Society for Microbiology; Microbiology Resource Committee of the College of American Pathologists (2017) Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Arch Pathol Lab Med 141(6):776–786

    Article  CAS  PubMed  Google Scholar 

  • Silva SJRD, Paiva MHS, Guedes DRD, Krokovsky L, Melo FL, Silva MALD, Silva AD, Ayres CFJ, Pena LJ (2019) Development and validation of reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of ZIKV in mosquito samples from Brazil. Sci Rep 9(1):4494

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh KRP (1967) Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr Sci 36(19):506–508

    Google Scholar 

  • Singh M, Al-Eryani G, Carswell S, Ferguson JM, Blackburn J, Barton K, Roden D, Luciani F, Giang Phan T, Junankar S, Jackson K, Goodnow CC, Smith MA, Swarbrick A (2019) High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat Commun 10(1):3120

    Article  PubMed  PubMed Central  Google Scholar 

  • Staunton KM, Rohde BB, Townsend M, Liu J, Desnoyer M, Howell P, Amos B, Crawford J, Snoad N, Ritchie SA (2020) Investigating male Aedes aegypti (Diptera: Culicidae) attraction to different oviposition containers using various configurations of the sound gravid Aedes trap. J Med Entomol 57(3):957–961

    Article  PubMed  Google Scholar 

  • Staunton KM, Crawford JE, Liu J, Townsend M, Han Y, Desnoyer M, Howell P, Xiang W, Burkot TR, Snoad N, Ritchie SA (2021) A low-powered and highly selective trap for male Aedes (Diptera: Culicidae) surveillance: the male Aedes sound trap. J Med Entomol 58(1):408–415

    PubMed  Google Scholar 

  • Sutherland GL, Nasci RS (2007) Detection of West Nile virus in large pools of mosquitoes. J Am Mosq Control Assoc 23(4):389–395

    Article  PubMed  Google Scholar 

  • Takken W, Kline DL (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractants. J Am Mosq Control Assoc 5(3):311–316

    CAS  PubMed  Google Scholar 

  • Tang Z, Yamada H, Kraupa C, Canic S, Busquets N, Talavera S, Jiolle D, Vreysen MJB, Bouyer J, Abd-Alla AMM (2020) High sensitivity of one-step real-time reverse transcription quantitative PCR to detect low virus titers in large mosquito pools. Parasit Vectors 13(1):460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangena JA, Thammavong P, Hiscox A, Lindsay SW, Brey PT (2015) The human-baited double net trap: an alternative to human landing catches for collecting outdoor biting mosquitoes in Lao PDR. PLoS One 10(9):e0138735

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyson JR, O’Neil NJ, Jain M, Olsen HE, Hieter P, Snutch TP (2018) MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res 28(2):266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Hurk AF, Hall-Mendelin S, Pyke AT, Smith GA, Mackenzie JS (2010) Vector competence of Australian mosquitoes for chikungunya virus. Vector Borne Zoonotic Dis 10(5):489–495

    Article  PubMed  Google Scholar 

  • Vazquez-Prokopec GM, Galvin WA, Kelly R, Kitron U (2009) A new, cost-effective, battery-powered aspirator for adult mosquito collections. J Med Entomol 46(6):1256–1259

    Article  PubMed  Google Scholar 

  • Walker T, Jeffries CL, Mansfield KL, Johnson N (2014) Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasit Vectors 7(1):382

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Moore NE, Deng YM, Eccles DA, Hall RJ (2015) MinION nanopore sequencing of an influenza genome. Front Microbiol 6:766

    PubMed  PubMed Central  Google Scholar 

  • Warrilow D, Watterson D, Hall RA, Davis SS, Weir R, Kurucz N, Whelan P, Allcock R, Hall-Mendelin S, O’Brien CA, Hobson-Peters J (2014) A new species of mesonivirus from the Northern Territory, Australia. PLoS One 9(3):e91103

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver SC, Forrester NL (2015) Chikungunya: evolutionary history and recent epidemic spread. Antivir Res 120:32–39

    Article  CAS  PubMed  Google Scholar 

  • Williams CR, Long SA, Russell RC, Ritchie SA (2006) Field efficacy of the BG-sentinel compared with CDC backpack aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc 22(2):296–300

    Article  PubMed  Google Scholar 

  • Xiao P, Li C, Zhang Y, Han J, Guo X, Xie L, Tian M, Li Y, Wang M, Liu H, Ren J, Zhou H, Lu H, Jin N (2018) Metagenomic sequencing from mosquitoes in China reveals a variety of insect and human viruses. Front Cell Infect Microbiol 8:364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Garver LS, Bingham KM, Hang J, Jochim RC, Davidson SA, Richardson JH, Jarman RG (2015) Feasibility of using the mosquito blood meal for rapid and efficient human and animal virus surveillance and discovery. Am J Trop Med Hyg 93(6):1377–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaren O, Alto BW, Gangodkar PV, Ranade SR, Patil KN, Bradley KM, Yang Z, Phadke N, Benner SA (2017) Point of sampling detection of Zika virus within a multiplexed kit capable of detecting dengue and chikungunya. BMC Infect Dis 17(1):293

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YU, Tian ZW, Ge JQ, Wang YI (1984) A simplified method for the identification of arboviruses: virus detection using enzyme immunoassay on cultured cells. J Virol Methods 9:45–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, D.T., Paradkar, P., Karl, S. (2021). Arbovirus Detection in Vectors. In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_14

Download citation

Publish with us

Policies and ethics