Skip to main content

Wolbachia Endosymbiont and Mosquito Vectors, with Emphasis on Lymphatic Filariasis Elimination

  • Chapter
  • First Online:
Genetically Modified and other Innovative Vector Control Technologies
  • 496 Accesses

Abstract

Wolbachia are maternally inherited intracellular bacteria, known to alter early development and mitotic processes in their hosts. They are frequently observed as a reproductive parasite, capable of inducing feminization, parthenogenesis, male killing, or cytoplasmic incompatibility. A total of 18 clades of Wolbachia have been reported, almost exclusively in arthropods. Wolbachia-based strategies have been proposed for the control of disease vectors. Wolbachia-based population suppression and transmission blocking can work in species not commonly infected with Wolbachia in the wild. However, efficient maintenance and spread of Wolbachia infection into field populations is crucial to the success of this strategy. Property of cytoplasmic incompatibility (CI) can be used to reduce the density of mosquito field populations through inundative releases of incompatible males in order to sterilize females. In semi-field condition at La Reunion, the LR[wPip(Is)] males of Culex quinquefasciatus successfully competed with field males in mating with field females. Depletion of Wolbachia endobacteria by antibiotic therapy prevents larval moulting and kills adult filarial worms. This strategy could act as an adjunct to vector control and is being exploited for the elimination of lymphatic filariasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschilimann JP (1990) Simultaneous occurrence of thelytoky and bisexuality in Hymenopteran species, and its implications for the biological control of pests. Entomophaga 35:3–5

    Article  Google Scholar 

  • Aljayyoussi G, Tyrer HE, Ford L et al (2017) Short-course, high-dose rifampicin achieves Wolbachia depletion predictive of curative outcomes in preclinical models of lymphatic filariasis and Onchocerciasis. Sci Rep 7(1):210

    Article  PubMed  PubMed Central  Google Scholar 

  • Atyame CM, Cattel J, Lebon C et al (2015) Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions. PLoS One 10(3):e0119288

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayala D, Akone-Ella O, Rahola N, Kengne P et al (2019) Natural Wolbachia infections are common in the major malaria vectors in Central Africa. Evol Appl 12:1583–1594

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaji S, Jayachandran S, Prabagaran SR (2019) Evidence for the natural occurrence of Wolbachia in Aedes aegypti mosquitoes. FEMS Microbiol Lett 366:fnz055

    Article  CAS  PubMed  Google Scholar 

  • Baldini F, Segata N, Pompon J et al (2014) Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun 5:3985. https://doi.org/10.1038/ncomm.s4985

    Article  CAS  PubMed  Google Scholar 

  • Baldini F, Rouge J, Kreppel K et al (2018) First report of natural Wolbachia infection in the malaria mosquito Anopheles arabiensis in Tanzania. Parasit Vectors 11(1):635. https://doi.org/10.1186/s13071-018-3249-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265:2407–2413. https://doi.org/10.1098/rspb.1998.0591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sachhi L (1999) Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 29:357–364

    Article  CAS  PubMed  Google Scholar 

  • Bandi C, Trees AJ, Brattig NW (2001) Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 98(1–3):215–238

    Article  CAS  PubMed  Google Scholar 

  • Barr AR (1980) Cytoplasmic incompatibility in natural populations of a mosquito, Culex pipiens L. Nature 283:71–72

    Article  CAS  PubMed  Google Scholar 

  • Beard CB, O’Neill SL, Tesh RB, Richards FF, Aksoy S (1993) Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 9:179–183

    Article  CAS  PubMed  Google Scholar 

  • Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M (2002) High Wolbachia density in insecticide-resistant mosquitoes. Proc Biol Sci 269(1498):1413–1416

    Article  PubMed  PubMed Central  Google Scholar 

  • Binnington KL, Hoffmann AA (1989) Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila simulans. J Invertebr Pathol 54:344–352

    Article  Google Scholar 

  • Brattig NW, Bazzocchi C, Kirschning CJ, Reiling N et al (2004) The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J Immunol 173:437–445. https://doi.org/10.4049/jimmunol.173.1.437.124

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer JAJ, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560

    Article  CAS  PubMed  Google Scholar 

  • Bressac C, Rousset F (1992) The reproductive incompatibility system in D. simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol 61:226–230

    Article  Google Scholar 

  • Brownstein JS, Hett E, O’Neill SL (2003) The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 84:24–29

    Article  CAS  PubMed  Google Scholar 

  • Caragata EP, Pais FS, Baton LA, Silva JB, Sorgine MH, Moreira LA (2017) The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. BMC Genomics 18(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal TM, Hashimoto K, Harnandika RK, Amalin DM, Watanabe K (2019) Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasite Vectors 12:361

    Article  Google Scholar 

  • Casiraghi M, Anderson TJC, Bandi C, Bazzocchi C, Genchi C (2000) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122:93–103

    Article  Google Scholar 

  • Chrostek E, Gerth M (2019) Is Anopheles gambiae a natural host of Wolbachia? mBio 10:e00784-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook PE, McMeniman CJ, O’Neill SL (2008) Modifying insect population age structure to control vector-borne disease. Adv Exp Med Biol 627:126–140

    Article  CAS  PubMed  Google Scholar 

  • Coon KL, Brown MR, Strand MR (2016) Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol Ecol 25:5806–5826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis CF (1992) Selfish genes in mosquitoes. Nature 355:511–515

    Google Scholar 

  • Curtis CF, Adak T (1974) Population replacement in Culex fatigans by means of cytoplasmic incompatibility. Bull World Health Org 51:249–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darby AC, Armstrong SD, Bah GS et al (2012) Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22:2467–2477. https://doi.org/10.1101/gr.138420.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer J, Beltran-Bech S, Lesobre J, Raimond M, Johnson M, Bouchon D (2014) Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods. Mol Ecol 23(10):2619–2635

    Article  CAS  PubMed  Google Scholar 

  • Duron O, Bernard J, Atyame CM, Dumas E, Weill M (2012) Rapid evolution of Wolbachia incompatibility types. Proc Biol Sci 279(1746):4473–4480

    PubMed  PubMed Central  Google Scholar 

  • Foster JM, Hoerauf A, Slatko BE, Taylor MJ (2013) The Wolbachia bacterial endosymbionts of filarial nematodes. In: Kennedy MW, Harnett W (eds) Parasitic nematodes: molecular biology, biochemistry and immunology, 2nd edn. CABI, Wallingford, pp 308–336

    Chapter  Google Scholar 

  • Foster JM, Landmann F, Ford L, Johnston KL, Elsasser SC, Schulte-Hostedde AI et al (2014) Absence of Wolbachia endobacteria in the human parasitic nematode Dracunculus medinensis and two related Dracunculus species infecting wildlife. Parasit Vectors 7:140

    Article  PubMed  PubMed Central  Google Scholar 

  • French WL (1978) Genetic and phenogenetic studies on the dynamic nature of the cytoplasmic inheritance system in Culex pipiens. Genetics 88:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gayen P, Maitra S, Datta S, Sinha Babu SP (2010) Evidence for Wolbachia symbiosis in microfilariae of Wuchereria bancrofti from West Bengal, India. J Biosci 35(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Geoghegan V, Stainton K, Rainey SM et al (2017) Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia infected Aedes aegypti cells. Nat Commun 8:526. https://doi.org/10.1038/s41467-017-00610-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girin C, Bouletreau M (1995) Microorganism-associated variation in host infestation efficiency in a parasitoid wasp, Trichogramma boutatachae (Hymenoptera, Trichogrammatidae). Experientia 51:398–401

    Article  CAS  Google Scholar 

  • Gloria-Soria A, Chiodo TG, Powell JR (2018) Lack of evidence for natural Wolbachia infections in Aedes aegypti (Diptera: Culicidae). J Med Entomol 55:1354–1356

    PubMed  PubMed Central  Google Scholar 

  • Glover DM, Raff J, Karr TL, O’Neil SL, Lin H, Wolfner MF (1990) Parasites in Drosophila embryos. Nature 348:117

    Article  CAS  PubMed  Google Scholar 

  • Glowska E, Dragun-Damian A, Dabert M, Gerth M (2015) New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect Genet Evol 30:140–146. https://doi.org/10.1016/j.meegid.2014.12.019.10

    Article  PubMed  Google Scholar 

  • Gomes FM, Hixson BL, Tyner MDW et al (2017) Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission. PNAS 114(47):12566–12571. https://doi.org/10.1073/pnas.17161.81114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen RDE, Trees AJ, Bah GS et al (2011) A worm’s best friend: recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proc Biol Sci 278:2293–2302. https://doi.org/10.1098/rspb.2010.2367

    Article  PubMed  Google Scholar 

  • Hertig M, Wolbach SB (1924) Studies on Rickettsia-like micro-organisms in insects. J Med Res 44:329–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA (2005) Incompatible mosquitoes. Nature 436(1):189

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Clancy DJ, Merton E (1994) Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics 136:993–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoti SL, Sridhar A, Das PK (2003) Presence of Wolbachia endosymbionts in microfilariae of Wuchereria bancrofti (Spirurida: Onchocercidae) from different geographical regions in India. Mem Inst Oswaldo Cruz 98:1017–1019

    Article  CAS  PubMed  Google Scholar 

  • Hughes GL, Dodson BL, Johnson RM et al (2014) Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci 111(34):12498–12503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juchault P, Frelon M, Bouchon D, Rigaud T (1994) New evidence for feminizing bacteria in terrestrial isopods: evolutionary implications. C R Acad Sci Paris Life Sci 317:225–230

    Google Scholar 

  • Karami M, Moosa-Kazemi SH, Oshaghi MA et al (2016) Wolbachia endobacteria in natural populations of Culex pipiens of Iran and its phylogenetic congruence. J Arthropod Borne Dis 10(3):347–363

    PubMed  PubMed Central  Google Scholar 

  • Kittayapong P, Baisley KJ, Baimai V, O’Neill SL (2000) Distribution and diversity of Wolbachia infections in southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37:340–345

    Article  CAS  PubMed  Google Scholar 

  • Knight J (2001) Meet the Herod bug. Nature 412:12–14

    Article  CAS  PubMed  Google Scholar 

  • Kozek WJ (1977) Transovarially-transmitted intracellular microorganisms in adult and larval stages of Brugia malayi. J Parasitol 63:992–1000. https://doi.org/10.2307/3279832

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Yu W, Jiang J et al (2019) Wolbachia pipientis occurs in Aedes aegypti populations in New Mexico and Florida, USA. Ecol Evol 9:6148–6156

    Article  PubMed  PubMed Central  Google Scholar 

  • Landmann F (2019) The Wolbachia endosymbionts. Microbiol Spectrum 7(2):BAI-0018-2019. https://doi.org/10.1128/microbiolspec.BAI-0018-2019

    Article  Google Scholar 

  • Lassy CW, Karr TL (1996) Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech Dev 57:47–58

    Article  CAS  PubMed  Google Scholar 

  • Laven H (1951) Crossing experiments with Culex strains. Evolution 5:370–375

    Article  Google Scholar 

  • Laven H (1959) Speciation by cytoplasmic isolation in the Culex pipiens complex. Cold Spring Harb Symp Quant Biol 24:166–173

    Article  CAS  PubMed  Google Scholar 

  • Laven H (1967a) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216:383–384

    Article  CAS  PubMed  Google Scholar 

  • Laven H (1967b) Speciation and evolution in Culex pipiens. In: Wright JW, Pal R (eds) Genetics of insect vectors of disease. Elsevier, Holland, pp 251–275

    Google Scholar 

  • Lefoulon E, Bain O, Makepeace BL et al (2016) Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. Peer J 4:e1840. https://doi.org/10.7717/peerj.1840.9

    Article  PubMed  PubMed Central  Google Scholar 

  • Legrand JJ, Legrand-Hamelin E, Juchault P (1987) Sex determination in Crustacea. Biol Rev 62:439–470

    Article  Google Scholar 

  • Lin M, Rikihisa Y (2003) Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71:5324–5331. https://doi.org/10.1128/IAI.71.9.5324-5331.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mand S, Büttner DW, Hoerauf A (2008) Images in clinical tropical medicine Bancroftian Filariasis—absence of Wolbachia after doxycycline treatment. Am J Trop Med Hyg 78(6):854–855

    Article  PubMed  Google Scholar 

  • McClelland GAH (1967) Speciation and evolution in Aedes. In: Wright JW, Pai R (eds) Genetics of insect vectors of diseases. Elsevier, Amsterdam

    Google Scholar 

  • McGarry HF, Pfarr K, Egerton G et al (2003) Evidence against Wolbachia symbiosis in Loa loa. Filaria J 2:1–7

    Article  Google Scholar 

  • Mercot H, Llorente B, Jacques M, Atlan A, Montchamp-Moreau C (1995) Variability within the Seychelles cytoplasmic incompatibility system in Drosophila simulans. Genetics 141:1015–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugapola NWNP, De Silva WAPP, Karunaratne SHPP (2017) Distribution and phylogeny of Wolbachia strains in wild mosquito populations in Sri Lanka. Parasit Vectors 10:230

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill SL (2018) The use of Wolbachia by the world mosquito program to interrupt transmission of Aedes aegypti transmitted viruses. Adv Exp Med Biol 1062:355–360

    Article  PubMed  Google Scholar 

  • O’Neill SL, Karr TL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348:178–180

    Article  PubMed  Google Scholar 

  • O’Neill SL, Pettigrew MM, Andreadis TG, Tesh RB (1995) An in-vitro system for culturing Wolbachia symbionts of arthropods. J Cell Biochem 21A:210

    Google Scholar 

  • Perrot-Minnot MJ, Guo L, Werren JH (1966) Double and single Wolbachia infections in Nasonia vitripennis. Genetics 143:961–972

    Article  Google Scholar 

  • Plichart C, Legran A-M (2005) Detection and characterization of Wolbachia infections in Wuchereria bancrofti (Spirurida: Onchocercidae) var. Pacifica and Aedes (Stegomyia) polynesiensis (Diptera: Culicidae). Am J Trop Med Hyg 73(2):354–358

    Article  PubMed  Google Scholar 

  • Ramaiah K, Ottesen EA (2014) Progress and impact of 13 years of the global programme to eliminate lymphatic filariasis on reducing the burden of filarial disease. PLoS Negl Trop Dis 8:e3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasgon JL (2012) Wolbachia induces male-specific mortality in the mosquito Culex pipiens (LIN strain). PLoS One 7(3):e30381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasgon JL, Scott TW (2004) Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes. Insect Biochem Mol Biol 34:707–713

    Article  CAS  PubMed  Google Scholar 

  • Rasgon JL, Styer LM, Scott TW (2003) Wolbachia-induced mortality as a mechanism to modulate pathogen transmission by vector arthropods. J Med Entomol 40:125–132

    Article  PubMed  Google Scholar 

  • Ravikumar H, Ramachandraswamy N, Sampathkumar S et al (2010) A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae). Trop Biomed 27(3):384–393

    CAS  PubMed  Google Scholar 

  • Reed KM, Werren JH (1995) Induction of paternal genome loss by the paternal sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol Reprod Dev 40:408–418

    Article  CAS  PubMed  Google Scholar 

  • Ricci I, Cancrini G, Gabrielli S, D’amelio S, Favia G (2002) Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. J Med Entomol 39:562–567

    Article  PubMed  Google Scholar 

  • Rigaud T, Juchault P (1993) Conflict between feminizing sex ratio distorters and an autosomal masculinizing gene in the terrestrial isopod Armadillidium vulgare Latr. Genetics 133:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigaud T, Souty-Grosset C, Raimond R, Mocquard JP, Juchault P (1991) Feminizing endocytobiosis in the terrestrial crustacean Armadillidium vulgare Latr. (Isopoda): recent acquisitions. Endocytobiosis Cell Res 7:259–273

    Google Scholar 

  • Ross PA, Callahan AG, Yang Q et al (2020) An elusive endosymbiont: does Wolbachia occur naturally in Aedes aegypti? Ecol Evol 10:1581–1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan SL, Saul GB (1968) Post fertilization effect of incompatibility factors in Mormoniella. Mol Gen Genet 103:24–36

    Article  Google Scholar 

  • Salazar M, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarwar MS, Jahan N, Shahbaz F (2018) Molecular detection and characterization of Wolbachia pipientis from Culex quinquefasciatus collected from Lahore, Pakistan. Am J Trop Med Hyg 98(1):154–161

    Article  PubMed  Google Scholar 

  • Saul GB (1961) An analysis of non-reciprocal cross incompatibility in Mormoniella vitripennis (Walker). Z Vererbungs 92:28–33

    Google Scholar 

  • Shaw WR, Marcenac P, Childs LM et al (2016) Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun 7:11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinkins SP, O’Neill SL (2000) Wolbachia as a vehicle to modify insect populations. CRC press, Boca Raton, FL

    Google Scholar 

  • Slatko BE, Taylor MJ, Foster JM (2010) The Wolbachia endosymbiont as an anti-filarial nematode target. Symbiosis 51:55–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Slatko BE, Luck AN, Dobson SL, Foster JM (2014) Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol 195:88–95

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer R (1993) The use of sexual versus asexual wasps in biological control. Entomophaga 38:3–6

    Article  Google Scholar 

  • Stouthamer R, Kazmer DJ (1994) Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73:317–327

    Article  Google Scholar 

  • Stouthamer R, Werren JH (1993) Microbes associated with parthenogenesis in wasps of the genus Trichogramma. J Invertebr Pathol 61:6–9

    Article  Google Scholar 

  • Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci U S A 87:2424–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361:66–68

    Article  CAS  PubMed  Google Scholar 

  • Subbarao SK, Krishnamurthy BS, Curtis CF, Adak T, Chandrahas RK (1974) Segregation of cytoplasmic incompatibility properties in Culex pipiens fatigans. Genetics 87:381–390

    Article  Google Scholar 

  • Sunish IP, Rajendran R, Paramasivan R, Dhananjeyan KJ, Tyagi BK (2011) Wolbachia endobacteria in a natural population of Culex quinquefasciatus from filariasis endemic villages of South India and its phylogenetic implication. Trop Biomed 28(3):569–576

    CAS  PubMed  Google Scholar 

  • Taylor MJ, Bilo K, Cross HF, Archer JP, Underwood AP (1999) 16S rDNA phylogeny and ultrastructural characterization of Wolbachia intracellular bacteria of the filarial nematodes Brugia malayi, B. pahangi and Wuchereria bancrofti. Exp Parasitol 91:356–361

    Article  CAS  PubMed  Google Scholar 

  • Taylor MJ, Makunde WH, McGarry HF, Turner JD, Mand S, Hoerauf A (2005) Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet 365:2116–2121

    Article  CAS  PubMed  Google Scholar 

  • Teo CH, Lim PK, Voon K, Mak JW (2017) Detection of dengue viruses and Wolbachia in Aedes aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, Malaysia. Trop Biomed 34:583–597

    CAS  PubMed  Google Scholar 

  • Thongsripong P, Chandler JA, Green AB et al (2018) Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol Evol 8:1352–1368

    Article  PubMed  Google Scholar 

  • Trpis M, Perrone JB, Reissig M, Parker KL (1981) Control of cytoplasmic incompatibility in the Aedes scutellaris complex. J Hered 72:313–317

    Article  Google Scholar 

  • Tsai KH, Lien JC, Huang CG, Wu WJ, Chen WJ (2004) Molecular (sub) grouping of endosymbiont Wolbachia infection among mosquitoes of Taiwan. J Med Entomol 41(4):677–683

    Article  CAS  PubMed  Google Scholar 

  • Turner JD, Sharma R, Al Jayoussi G et al (2017) Albendazole and antibiotics synergize to deliver short-course anti-Wolbachia curative treatments in preclinical models of filariasis. Proc Natl Acad Sci U S A 114:E9712–E9721. https://doi.org/10.1073/pnas.1710845114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GH, Jia LY, Xiao JH, Huang DW (2016) Discovery of a new Wolbachia supergroup in cave spider species and the lateral transfer of phage WO among distant hosts. Infect Genet Evol 41:1–7. https://doi.org/10.1016/j.meegid.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Jaenike J (1995) Wolbachia and cytoplasmic incompatibility in mycophagous Drosophila and their relatives. Heredity 75:320–326

    Article  PubMed  Google Scholar 

  • Werren JH, Guo L, Windsor DW (1995) Distribution of Wolbachia in neotropical arthropods. Proc R Soc Lond B 262:147–204

    Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–775

    Article  CAS  PubMed  Google Scholar 

  • Wiwatanaratanabutr I (2013) Geographic distribution of Wolbachia infections in mosquitoes from Thailand. J Invertebr Pathol 114:337–340

    Article  PubMed  Google Scholar 

  • World Health Organization (2012) Global programme to eliminate lymphatic Filariasis: progress report on mass drug administration, 2011. Wkly Epidemiol Rec 37(87):345–356

    Google Scholar 

  • Wright JD, Wang BT (1980) Observations on Wolbachiae in mosquitoes. J Invertebr Pathol 35:200–208

    Article  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome over run by mobile genetic elements. PLoS Biol 2:e69. https://doi.org/10.1371/journal.pbio.0020069

    Article  PubMed  PubMed Central  Google Scholar 

  • Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens. Nature 232:657–658

    Article  CAS  PubMed  Google Scholar 

  • Zchori-Fein E, Faktor O, Zeidan M, Gottlieb Y, Czosnek H, Rosen D (1995) Parthenogenesis-inducing microorganisms in Aphytis (Hymenoptera: Aphelinidae). Insect Mol Biol 4:173–178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunish, I.P. (2021). Wolbachia Endosymbiont and Mosquito Vectors, with Emphasis on Lymphatic Filariasis Elimination. In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_12

Download citation

Publish with us

Policies and ethics