Skip to main content

Engineering RNA Interference-Based Dengue Virus Resistance in the Mosquito Vector Aedes aegypti: The Current Status and Future Directions

  • Chapter
  • First Online:
Genetically Modified and other Innovative Vector Control Technologies

Abstract

Dengue is an acute, febrile disease caused by the dengue viruses (DENV) comprising four serotypes and transmitted by the mosquito vector Ae. aegypti. DENV are single-stranded, positive-sense RNA viruses of the family Flaviviridae. Dengue is declared as a current significant challenge in the Southeast Asia, imposing growing burden on infected populations. To date, dengue control has mostly relied on vector control strategies which have largely become ineffective. There is, therefore, an urgent need for novel vector control strategies. Development of genetically modified mosquito vectors to manipulate disease-vectoring populations has gathered increased interest in recent time. RNAi-mediated viral resistance contributes to the suppression of viruses, including DENV in the mosquito vector Ae. aegypti. With recent advances in the field of molecular biology, we and other scientists are continuing to engineer genes that confer virus resistance to reduce transmission rates of DENV and introducing these genes into the mosquito genome. Even though scientists successfully generated mosquito refractory to DENV2–4, no mosquito refractory to all four serotypes has been developed to date. This limitation can be overcome by systematic analysis of the molecular mechanisms of RNAi in the mosquito vector Ae. aegypti. An enhanced understanding of RNAi function in the mosquito vector Ae. aegypti will facilitate the application of RNAi to control the transmission of the dengue disease in the future. Here, based on current understanding of the RNAi, we discuss the mechanisms of RNAi in the mosquito vector Ae. aegypti. We also provide guidelines for optimal design of RNAi experiments in Ae. aegypti with the possible risks associated with them along with proposed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman ZN, Jasinskiene N, James AA (2002a) Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol Biochem Parasitol 121(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Adelman ZN, Sanchez-Vargas I, Travanty EA, Carlson JO, Beaty BJ, Blair CD, Olson KE (2002b) RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol 76(24):12925–12933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402(6760):370–371

    Article  CAS  PubMed  Google Scholar 

  • Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, Karpilow J, Khvorova A (2007) A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2(9):2068

    Article  CAS  PubMed  Google Scholar 

  • Burt A (2014) Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc B Biol Sci 369(1645):20130432

    Article  Google Scholar 

  • Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD (2008) Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  • Capeding MR, Tran NH, Hadinegoro SRS, Ismail HIHM, Chotpitayasunondh T, Chua MN, Luong CQ, Rusmil K, Wirawan DN, Nallusamy R, Pitisuttithum P (2014) Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384(9951):1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44(1):649–688

    Article  CAS  PubMed  Google Scholar 

  • Champer J, Buchman A, Akbari OS (2016) Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 17(3):146

    Article  CAS  PubMed  Google Scholar 

  • Chandler LJ, Blair CD, Beaty BJ (1998) La Crosse virus infection of Aedes triseriatus (Diptera: Culicidae) ovaries before dissemination of virus from the midgut. J Med Entomol 35(4):567–572

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Jasinskiene N, Miyashiro L, James AA (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci 95(7):3748–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Förstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130(2):287–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE (2006) Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci 103(11):4198–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franz AW, Jasinskiene N, Sanchez-Vargas I, Isaacs AT, Smith MR, Khoo CC, Heersink MS, James AA, Olson KE (2011) Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and ΦC31 site-directed recombination. Insect Mol Biol 20(5):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser MJ, Clszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD (2010) Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16(1):43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobučar A, Pem-Novosel I, Kurečić-Filipović S, Komparak S, Martić R, Đuričić S, Betica-Radić L (2011) Autochthonous dengue fever in Croatia, August–September 2010. Eurosurveillance 16(9):19805

    Article  PubMed  Google Scholar 

  • Huynh CQ, Zieler H (1999) Construction of modular and versatile plasmid vectors for the high-level expression of single or multiple genes in insects and insect cell lines. J Mol Biol 288(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Korrapati AB, Swaminathan G, Singh A, Khanna N, Swaminathan S (2012) Adenovirus delivered short hairpin RNA targeting a conserved site in the 5′ non-translated region inhibits all four serotypes of dengue viruses. PLoS Negl Trop Dis 6(7):e1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6(7):1001005

    Article  Google Scholar 

  • Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638

    Article  CAS  PubMed  Google Scholar 

  • Lobo NF, Hua-Van A, Li X, Nolen BM, Fraser MJ Jr (2002) Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector. Insect Mol Biol 11(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Mathur G, Sanchez-Vargas I, Alvarez D, Olson KE, Marinotti O, James AA (2010) Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 19(6):753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarlane M, Arias-Goeta C, Martin E, O’Hara Z, Lulla A, Mousson L, Rainey SM, Misbah S, Schnettler E, Donald CL, Merits A (2014) Characterization of Aedes aegypti innate-immune pathways that limit chikungunya virus replication. PLoS Negl Trop Dis 8(7):2994

    Article  Google Scholar 

  • Moreira LA, Edwards MJ, Adhami F, Jasinskiene N, James AA, Jacobs-Lorena M (2000) Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci 97(20):10895–10898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramyasoma HPBKD, Dassanayake RS, Hapugoda M, Capurro ML, Silva Gunawardene YIN (2020) Multiple dengue virus serotypes resistant transgenic Aedes aegypti fitness evaluated under laboratory conditions. RNA Biol 17:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22(3):326–330

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vargas I, Travanty EA, Keene KM, Franz AW, Beaty BJ, Blair CD, Olson KE (2004) RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5(2):1000299

    Article  Google Scholar 

  • Scott TW, Burrage TG (1984) Rapid infection of salivary glands in Culiseta melanura with eastern equine encephalitis virus: an electron microscopic study. Am J Trop Med Hyg 33(5):961–964

    Article  CAS  PubMed  Google Scholar 

  • Sinkins SP, Gould F (2006) Gene drive systems for insect disease vectors. Nat Rev Genet 7(6):427

    Article  CAS  PubMed  Google Scholar 

  • Stein DA, Perry ST, Buck MD, Oehmen CS, Fischer MA, Poore E, Smith JL, Lancaster AM, Hirsch AJ, Slifka MK, Nelson JA (2011) Inhibition of dengue virus infections in cell cultures and in AG129 mice by a small interfering RNA targeting a highly conserved sequence. J Virol 85(19):10154–10166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Nisalak A, Gettayacamin M, Eckels KH, Putnak JR, Vaughn DW, Innis BL, Thomas SJ, Endy TP (2006) Protection of Rhesus monkeys against dengue virus challenge after tetravalent live attenuated dengue virus vaccination. J Infect Dis 193(12):1658–1665

    Article  PubMed  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57(2):231–245

    Article  CAS  PubMed  Google Scholar 

  • Travanty EA, Adelman ZN, Franz AW, Keene KM, Beaty BJ, Blair CD, James AA, Olson KE (2004) Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochem Mol Biol 34(7):607–613

    Article  CAS  PubMed  Google Scholar 

  • Villar L, Dayan GH, Arredondo-García JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramírez JO, Carrasquilla G, Rey LC (2015) Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med 372(2):113–123

    Article  PubMed  Google Scholar 

  • Villegas PM, Ortega E, Villa-Tanaca L, Barrón BL, Torres-Flores J (2018) Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Arch Virol 163(5):1331–1335

    Article  CAS  PubMed  Google Scholar 

  • Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller SD, Antony C, Krijnse-Locker J, Bartenschlager R (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5(4):365–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westaway EG, Brinton MA, Gaidamovich SY, Horzinek MC, Igarashi A, Kääriäinen L, Lvov DK, Porterfield JS, Russell PK, Trent DW (1985) Flaviviridae. Intervirology 24(4):183–192

    Article  CAS  PubMed  Google Scholar 

  • Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA (1997) Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71(9):6650–6661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22(1):22

    Article  CAS  PubMed  Google Scholar 

  • Wolfe ND, Kilbourn AM, Karesh WB, Rahman HA, Bosi EJ, Cropp BC, Andau M, Spielman A, Gubler DJ (2001) Sylvatic transmission of arboviruses among Bornean orangutans. Am J Trop Med Hyg 64(5):310–316

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Smibert P, Westholm JO, Jee D, Maurin T, Lai EC (2013) Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Res 42(3):1987–2002

    Article  PubMed  PubMed Central  Google Scholar 

  • Yen PS, James A, Li JC, Chen CH, Failloux AB (2018) Synthetic miRNAs induce dual arboviral-resistance phenotypes in the vector mosquito Aedes aegypti. Commun Biol 1(1):11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the Accelerating Higher Education Expansion and Development (AHEAD) operation for financial support to carry out research studies on high-tech approaches to control dengue by genetic engineering mosquito vector Ae. aegypti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dassanayake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denipitiyage, S.D., Gunawardene, Y.I.N.S., Federico, Z., Dassanayake, R.S. (2021). Engineering RNA Interference-Based Dengue Virus Resistance in the Mosquito Vector Aedes aegypti: The Current Status and Future Directions. In: Tyagi, B.K. (eds) Genetically Modified and other Innovative Vector Control Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-2964-8_10

Download citation

Publish with us

Policies and ethics