The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Arbitrage

  • Philip H. Dybvig
  • Stephen A. Ross
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_449

Abstract

The absence of arbitrage is the unifying concept for much of finance. Absence of arbitrage is more general than equilibrium because it does not require all agents to be rational. The Fundamental Theorem of Asset Pricing asserts the equivalence of absence of arbitrage, existence of a positive linear pricing rule, and existence of some hypothetical agent who prefers more to less and has an optimum. Equivalent representations of the pricing rule are the martingale measure (risk-neutral pricing), and a positive state price density. Applications of no arbitrage and these representations include Modigliani–Miller theory, option pricing, investments, and forward exchange parity.

Keywords

Arbitrage Arrow–Debreu model Arbitrage pricing theory Capital asset pricing model Capital budgeting Capital structure Dividend discount model Dividend policy Dominance Duality Efficient allocation Efficient market hypothesis Equivalent martingale measure Farkas’ Lemma Forward exchange, parity theory of Fundamental theorem of asset pricing Hahn–Banach th Hyperplanes Interest rates Law of one price Linear pricing rules Linear programming Markov processes Martingales Modigliani–Miller th No arbitrage Noise Option Option pricing Pricing rule representation th Purchasing power parity Risk premium Risk-neutral probabilities Separation theorems State price density State spaces Trade costs von Neumann and Morgenstern 

JEL Classifications

G0 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Beja, A. 1971. The structure of the cost of capital under uncertainty. Review of Economic Studies 38: 359–368.CrossRefGoogle Scholar
  2. Black, F., and M.S. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–654.CrossRefGoogle Scholar
  3. Brown, S., and J. Warner. 1980. Measuring security price performance. Journal of Financial Economies 8: 205–258.CrossRefGoogle Scholar
  4. Brown, S., and J. Warner. 1985. Using daily stock returns: The case of event studies. Journal of Financial Economics 14: 3–31.CrossRefGoogle Scholar
  5. Cox, J., and H. Leland. 2000. On dynamic investment strategies. Journal of Economic Dynamics and Control 24: 1859–1880.CrossRefGoogle Scholar
  6. Cox, J., and S.A. Ross. 1976a. The valuation of options for alternative stochastic processes. Journal of Financial Economics 3: 145–166.CrossRefGoogle Scholar
  7. Cox, J., and S.A. Ross. 1976b. A survey of some new results in financial option pricing theory. Journal of Finance 31: 383–402.CrossRefGoogle Scholar
  8. Cox, J., S. Ross, and M. Rubinstein. 1979. Option pricing: A simplified approach. Journal of Financial Economics 7: 229–263.CrossRefGoogle Scholar
  9. Dybvig, P. 1980. Some new tools for testing market efficiency and measuring mutual fund performance. Unpublished manuscript.Google Scholar
  10. Dybvig, P. 1988. Distributional analysis of portfolio choice. Journal of Business 61: 369–393.CrossRefGoogle Scholar
  11. Dybvig, P., and J. Ingersoll Jr. 1982. Mean-variance theory in complete markets. Journal of Business 55: 233–251.CrossRefGoogle Scholar
  12. Dybvig, P., and M. Loewenstein. 2003. Employee reload options: Pricing, hedging, and optimal exercise. Review of Financial Studies 16: 145–171.CrossRefGoogle Scholar
  13. Dybvig, P., and S. Ross. 1982. Portfolio efficient sets. Econometrica 50: 1525–1546.CrossRefGoogle Scholar
  14. Dybvig, P., J. Ingersoll, and S.A. Ross. 1996. Long forward and zero-coupon rates can never fall. Journal of Business 69: 1–25.CrossRefGoogle Scholar
  15. Einzig, P. 1937. The theory of forward exchange. London: Macmillan.Google Scholar
  16. Harrison, J.M., and D. Kreps. 1979. Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory 20: 381–408.CrossRefGoogle Scholar
  17. Karlin, S. 1959. Mathematical methods and theory in games, programming, and economics. Reading: Addison-Wesley.Google Scholar
  18. Keynes, J.M. 1923. A tract on monetary reform. London: Macmillan.Google Scholar
  19. Lintner, J. 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47: 13–37.CrossRefGoogle Scholar
  20. Merton, R. 1973. Theory of rational option pricing. Bell Journal of Economics and Management Science 4: 141–183.CrossRefGoogle Scholar
  21. Ross, S.A. 1976a. Return, risk and arbitrage. In Risk and return in finance, ed. I. Friend and J. Bicksler. Cambridge, MA: Ballinger.Google Scholar
  22. Ross, S.A. 1976b. The arbitrage theory of capital asset pricing. Journal of Economic Theory 13: 341–360.CrossRefGoogle Scholar
  23. Ross, S.A. 1978. A simple approach to the valuation of risky streams. Journal of Business 51: 453–475.CrossRefGoogle Scholar
  24. Rubinstein, M. 1976. The valuation of uncertain income streams and the pricing of options. Bell Journal of Economics and Management Science 7: 407–425.CrossRefGoogle Scholar
  25. Samuelson, P. 1947. Foundations of economic analysis. Cambridge, MA: Harvard University Press.Google Scholar
  26. Sharpe, W. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19: 425–442.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Philip H. Dybvig
    • 1
  • Stephen A. Ross
    • 1
  1. 1.