The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Minimax

  • Jörg Stoye
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2975

Abstract

Minimax (Wald, Statistical decision functions. New York: Wiley, 1950) is the principle in statistical decision theory of minimizing worst-case risk. It is the subject of a rich literature in statistics and saw occasional normative application in economics. Minimax is related to the maximin expected utility model (Gilboa and Schmeidler, J. Math. Econ. 18:141–153, 1989) in economics, an model of ambiguity aversion that was recently used to analyse model uncertainty.

Keywords

Ambiguity Decision theory Econometrics Estimation Maxmin Minimax Minimax regret Model uncertainty 
This is a preview of subscription content, log in to check access

Bibliography

  1. Anscombe, F.J., and R.J. Aumann. 1963. A definition of subjective probability. Annals of Mathematical Statistics 34: 199–205.CrossRefGoogle Scholar
  2. Arrow, K.J., and L. Hurwicz. 1972. An optimality criterion for decision-making under ignorance. In Uncertainty and expectations in economics: Essays in honour of G.L.S. Shackle, ed. C.F. Carter and J.L. Ford. London: Blackwell.Google Scholar
  3. Berger, J.O. 1985. Statistical decision theory and Bayesian analysis, 2nd ed. New York: Springer.CrossRefGoogle Scholar
  4. Chamberlain, G. 2000. Econometric applications of maxmin expected utility. Journal of Applied Econometrics 15: 625–644.CrossRefGoogle Scholar
  5. Chamberlain, G. 2008. Decision theory applied to an instrumental variables model. Econometrica 75: 609–652.CrossRefGoogle Scholar
  6. Cohen, M., and J.-Y. Jaffray. 1980. Rational behavior under complete ignorance. Econometrica 48: 1281–1299.CrossRefGoogle Scholar
  7. Ferguson, T. 1967. Mathematical statistics: A decision theoretic approach. New York: Academic Press.Google Scholar
  8. Gilboa, I., and D. Schmeidler. 1989. Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 18: 141–153.CrossRefGoogle Scholar
  9. Hansen, L.P., T.J. Sargent, G. Turmuhambetova, and N. Williams. 2006. Robust control and model misspecification. Journal of Economic Theory 128: 45–90.CrossRefGoogle Scholar
  10. Hodges, J.L., and E.L. Lehmann. 1950. Some problems in minimax point estimation. Annals of Mathematical Statistics 21: 182–197.CrossRefGoogle Scholar
  11. Le Cam, L. 1986. Asymptotic methods in statistical decision theory. New York: Springer.CrossRefGoogle Scholar
  12. Manski, C.F. 2004. Statistical treatment rules for heterogeneous populations. Econometrica 72: 1221–1246.CrossRefGoogle Scholar
  13. Milnor, J. 1954. Games against nature. In Decision processes, ed. R.M. Thrall, C.H. Coombs, and R.L. Davis. New York: Wiley.Google Scholar
  14. Rawls, J. 1999. A theory of justice, Rev. ed. Cambridge, MA: Harvard University Press.Google Scholar
  15. Savage, L.J. 1954. The foundations of statistics. New York: Wiley.Google Scholar
  16. Stoye, J. 2006. Statistical decisions under ambiguity, Discussion paper. New York: New York University.Google Scholar
  17. von Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100: 295–320.CrossRefGoogle Scholar
  18. von Neumann, J., and O. Morgenstern. 1947. Theory of games and economic behavior, 2nd ed. Princeton: Princeton University Press.Google Scholar
  19. Wald, A. 1945. Statistical decision functions which minimize the maximum risk. Annals of Mathematics 46: 265–280.CrossRefGoogle Scholar
  20. Wald, A. 1950. Statistical decision functions. New York: Wiley.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Jörg Stoye
    • 1
  1. 1.