The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Minimax Regret

  • Jörg Stoye
Reference work entry


Minimax regret (Savage, Journal of the American Statistical Association 46, 55–67, 1951) is the principle of optimizing worst-case loss relative to some measure of unavoidable risk. In statistical decision theory, it provides a non-Bayesian alternative to minimax. It differs from minimax by fulfilling von Neumann–Morgenstern independence but exhibiting menu dependence. Minimax regret has seen occasional use in statistics, and implausible implications of minimax in certain economic problems recently led to its reconsideration by economists.


Decision theory Econometrics Estimation Maxmin Minimax Minimax regret Model uncertainty 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Bergemann, D., and K.H. Schlag. 2007. Robust monopoly pricing, Cowles Foundation Discussion Paper 1527R. New Haven: Yale University.Google Scholar
  2. Bergemann, D., and K.H. Schlag. 2008. Pricing without priors. Journal of the European Economic Association (Papers and Proceedings) 6: 560–569.Google Scholar
  3. Berger, J.O. 1985. Statistical decision theory and Bayesian analysis, 2nd ed. New York: Springer.CrossRefGoogle Scholar
  4. Borodin, A., and R. El-Yaniv. 1998. Online computation and competitive analysis. Cambridge/New York: Cambridge University Press.Google Scholar
  5. Brock, W.A. 2006. Profiling problems with partially identified structure. Economic Journal 92: F427–F440.CrossRefGoogle Scholar
  6. Canner, P.L. 1970. Selecting one of two treatments when the responses are dichotomous. Journal of the American Statistical Association 65: 293–306.CrossRefGoogle Scholar
  7. Cesa-Bianchi, N., and G. Lugosi. 2006. Prediction, learning, and games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Chamberlain, G. 2000. Econometrics and decision theory. Journal of Econometrics 95: 255–283.CrossRefGoogle Scholar
  9. Chernoff, H. 1954. Rational selection of decision functions. Econometrica 22: 422–443.CrossRefGoogle Scholar
  10. Das Gupta, A., and W. Studden. 1991. Robust Bayesian experimental designs in normal linear models. Annals of Statistics 19: 1244–1256.CrossRefGoogle Scholar
  11. Droge, B. 1998. Minimax regret analysis of orthogonal series regression estimation: Selection versus shrinkage. Biometrika 85: 631–643.CrossRefGoogle Scholar
  12. Eozenou, P., J. Rivas, and K.H. Schlag. 2006. Minimax regret in practice: Four examples on treatment choice. Discussion paper. Florence: European University Institute.Google Scholar
  13. Foster, D., and R. Vohra. 1999. Regret in the on-line decision problem. Games and Economic Behavior 29: 7–36.CrossRefGoogle Scholar
  14. Hannan, J. 1957. Approximation of Bayes risk in repeated play. In Contributions to the theory of games, vol. III, ed. M. Dresher, A.W. Tucker, and P. Wolfe. Princeton: Princeton University Press.Google Scholar
  15. Hansen, B.E. 2005. Exact mean integrated squared error of higher-order kernels. Econometric Theory 21: 1031–1057.Google Scholar
  16. Hart, S., and A. Mas-Colell. 2001. A general class of adaptive strategies. Journal of Economic Theory 98: 26–54.CrossRefGoogle Scholar
  17. Hayashi, T. 2008. Regret aversion and opportunity-dependence. Journal of Economic Theory 139: 242–268.CrossRefGoogle Scholar
  18. Hirano, K., and J. Porter. 2008. Asymptotics for statistical treatment rules. Discussion paper. Tucson: University of Arizona.Google Scholar
  19. Manski, C.F. 2004. Statistical treatment rules for heterogeneous populations. Econometrica 72: 1221–1246.CrossRefGoogle Scholar
  20. Manski, C.F. 2007. Minimax-regret treatment choice with missing outcome data. Journal of Econometrics 139: 105–115.CrossRefGoogle Scholar
  21. Manski, C.F. 2008. Identification for prediction and decision. Cambridge, MA: Harvard University Press.Google Scholar
  22. Milnor, J. 1954. Games against nature. In Decision processes, ed. R.M. Thrall, C.H. Coombs, and R.L. Davis. New York: Wiley.Google Scholar
  23. Parmigiani, G. 1992. Minimax, information and ultrapessimism. Theory and Decision 33: 241–252.CrossRefGoogle Scholar
  24. Savage, L.J. 1951. The theory of statistical decision. Journal of the American Statistical Association 46: 55–67.CrossRefGoogle Scholar
  25. Savage, L.J. 1954. The foundations of statistics. New York: Wiley.Google Scholar
  26. Schlag, K.H. 2003. How to minimize maximum regret in repeated decisions. Discussion paper. Florence: European University Institute.Google Scholar
  27. Schlag, K.H. 2007. Eleven: Designing randomized experiments under minimax regret. Discussion paper. Florence: European University Institute.Google Scholar
  28. Stoye, J. 2006. Statistical decisions under ambiguity. Discussion paper. New York: New York University.Google Scholar
  29. Stoye, J. 2007a. Minimax regret treatment choice with incomplete data and many treatments. Econometric Theory 23: 190–199.CrossRefGoogle Scholar
  30. Stoye, J. 2007b. Axioms for minimax regret choice correspondences. Discussion paper. New York: New York University.Google Scholar
  31. Stoye, J. 2007c. Minimax regret treatment choice with finite samples and missing outcome data. In Proceedings of the fifth international symposium on imprecise probability: Theories and applications, ed. G. de Cooman, J. Veinarová, and M. Zaffalon. Prague.Google Scholar
  32. Stoye, J. 2007d. Minimax regret treatment choice with finite samples. Discussion paper. New York: New York University.Google Scholar
  33. Stoye, J. 2009. Minimax regret treatment choice with missing data: An application to young offenders. Journal of Statistical Theory and Practice, forthcoming.Google Scholar
  34. Wald, A. 1950. Statistical decision functions. New York: Wiley.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Jörg Stoye
    • 1
  1. 1.