The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Turnpike Theory, a Current Perspective

  • M. Ali Khan
  • Adriana Piazza
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2943

Abstract

This 2012 perspective of the 1987 Palgrave entry on ‘turnpike theory’ highlights the subsequent development of the subject in the light of a critical re-reading of the original. It distinguishes the 1949 conception, a response of Samuelson to a 1945 von Neumann challenge to the reception of his growth model in the economic literature, from the more capacious 1976 outline furnished by McKenzie. Thus, it differentiates asymptotic convergence of infinite-horizon optimal programs from what it terms their finite-horizon, classical turnpike counterparts. It identifies a move from the investigation of general theorems to a more detailed working of simple examples, and reports results on specific models of ‘choice of technique’ in development planning, and of lumber extraction in the economics of forestry. Drawing on ongoing advances in the field of dynamical systems, it sees such models as both litmus tests of the general theory and as productive settings to study the rationalisability of policy functions and a ‘folk theorem of intertemporal resource allocation’. The entry concludes with brief speculative remarks for future directions.

Keywords

Asymptotic convergence Classical turnpike theory Competitive equilibrium Development planning Discount factor Folk theorem Forest management Intertemporal resource allocation Middle-early-late turnpike Neighborhood turnpike theorem Optimal programs Radner’s value-loss method Ramsey model Rationalisability Von Neumann growth model 

JEL Classifications

C62 D90 Q23 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aghion, P. and Durlauf, S. N. (eds.) 2005. Handbook of economic growth. Vols. 1 and 2. Amsterdam: North-Holland.Google Scholar
  2. Arkin, V., and I. Evstigneev. 1987. Stochastic models of control and economic dynamics. New York: Academic.Google Scholar
  3. Arrow, K.J., and F.H. Hahn. 1971. General competitive analysis. San Francisco: Holden Day.Google Scholar
  4. Arrow, K. J., Hurwicz, L. and Uzawa, H. (eds.) 1958. Studies in linear and non linear programming. Palo Alto: Stanford University Press.Google Scholar
  5. Barnsley, M.F. 2006. Superfractals. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  6. Benhabib, J. 1992. Cycles and chaos in economic equilibrium. Princeton: Princeton University Press.Google Scholar
  7. Bewley, T.F. 2007. General equilibrium, overlapping generations models and optimal growth theory. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  8. Bhattacharya, R., and M. Majumdar. 2004. Dynamical systems subject to random shocks: An introduction. Economic Theory 23: 1–12.CrossRefGoogle Scholar
  9. Bhattacharya, R. and Majumdar, M. (eds.) 2007. Random dynamical systems. Cambridge, MA: Cambridge University Press.Google Scholar
  10. Boldrin, M., and L. Montrucchio. 1986a. Cyclic and chaotic behavior in intertemporal optimization models. Mathematical Modelling 8: 697–700.CrossRefGoogle Scholar
  11. Boldrin, M., and L. Montrucchio. 1986b. On the indeterminacy of capital accumulation paths. Journal of Economic Theory 40: 26–39.CrossRefGoogle Scholar
  12. Borwein, J., and D. Bailey. 2008. Mathematics by experiment. 2nd ed. Wellesley: A. K. Peters.Google Scholar
  13. Carlson, D.A., A.B. Haurie, and A. Leizarowitz. 1991. Infinite horizon optimal control: Deterministic and stochastic systems. Berlin: Springer.CrossRefGoogle Scholar
  14. Dana, R. A., Le Van, C., Mitra, T. and Nishimura, K. (eds.) 2006. Handbook of optimal growth. Vol. 1. Berlin: Springer.Google Scholar
  15. Debreu, G. 1983. Mathematical economics. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  16. Deneckere, R., and S. Pelikan. 1986. Competitive chaos. Journal of Economic Theory 40: 13–25.CrossRefGoogle Scholar
  17. Dorfman, R., R.M. Solow, and P.A. Samuelson. 1958. Linear programming and economic analysis. New York: McGraw-Hill Book Co..Google Scholar
  18. Follmer, H., and M. Majumdar. 1978. On the asymptotic behavior of stochastic economic processes. Journal of Mathematical Economics 5: 275–287.CrossRefGoogle Scholar
  19. Fujio, M. 2009. Optimal transition dynamics in the Leontief two-sector growth model with durable capital: The case of capital intensive consumption goods. Japanese Economic Review 60: 490–511.CrossRefGoogle Scholar
  20. Gale, D. 1970. Nonlinear duality and qualitative properties of optimal growth. In Integer and nonlinear programming, ed. J. Abadie, 309–319. Amsterdam: North-Holland.Google Scholar
  21. Joshi, S. 1998. Turnpike theorems in nonconvex nonstationary environments. International Economic Review 28: 225–248.Google Scholar
  22. Karlin, S.J. 1960. Mathematical methods and theory in games, programming and economics. Reading MA: Addison-Wesley.Google Scholar
  23. Khan, M. Ali. 2005. Intertemporal ethics, modern capital theory and the economics of forestry, Chapter 2. In Sustainability, economics and natural resources: Economics of sustainable forest management, ed. S. Kant and A. Berry, 39–65. Netherlands: Springer.CrossRefGoogle Scholar
  24. Khan, M.Ali. 2010. La concorrenza perfetta come teoria dell’equilibrio. In La matematica, ed. C. Bartocci and P. Odifreddi, Vol. IV. Rome: Einaudi (English translation available as Perfect Competition as Equilibrium Theory).Google Scholar
  25. Khan, M. Ali, and T. Mitra. 2005. On choice of technique in the Robinson–Solow–Srinivasan model. International Journal of Economic Theory 1: 83–109.CrossRefGoogle Scholar
  26. Khan, M. Ali, and T. Mitra. 2010. Discounted optimal growth in the two-sector RSS model: A further geometric investigation. mimeo: Johns Hopkins University.Google Scholar
  27. Khan, M. Ali, and T. Mitra. 2011. Complicated dynamics and parametric restrictions in the Robinson-Solow-Srinivasan model. mimeo: Cornell University.Google Scholar
  28. Khan, M. Ali, and T. Mitra. 2012a. Long run optimal behavior in a two-sector Robinson–Solow–Srinivasan model. Macroeconomic Dynamics 16: 70–85.CrossRefGoogle Scholar
  29. Khan, M. Ali, and T. Mitra. 2012b. Impatience and dynamic optimal behavior: A bifurcation analysis of the Robinson–Solow–Srinivasan model. Nonlinear Analysis 75: 1400–1418.CrossRefGoogle Scholar
  30. Khan, M. Ali, and A. Piazza. 2010a. On uniform convergence of undiscounted optimal programs in the Mitra–Wan forestry model: The strictly concave case. International Journal of Economic Theory 6: 57–76.CrossRefGoogle Scholar
  31. Khan, M. Ali, and A. Piazza. 2010b. On the non-existence of optimal programs in the Robinson–Solow–Srinivasan (RSS) model. Economics Letters 109: 94–98.CrossRefGoogle Scholar
  32. Khan, M. Ali, and A. Piazza. 2011a. Classical turnpike theory and the economics of forestry. Journal of Behavioral Economics and Organization 79: 194–201.CrossRefGoogle Scholar
  33. Khan, M. Ali, and A. Piazza. 2011b. The concavity assumption on felicities and asymptotic dynamics in the RSS model. Set-Valued and Variational Analysis 19: 135–156.CrossRefGoogle Scholar
  34. Khan, M. Ali, and A. Piazza. 2011c. Optimal cyclicity and chaos in the 2-sector RSS model: An anything-goes construction. Journal of Economic Behavior and Organization 80: 397–417.CrossRefGoogle Scholar
  35. Khan, M. Ali, and A. Piazza. 2011d. An overview of turnpike theory: Towards the discounted deterministic case. Advances in Mathematical Economics 14: 39–67.CrossRefGoogle Scholar
  36. Khan, M. Ali, and A. Piazza. 2011e. The economics of forestry and a set-valued turnpike of the classical type. Nonlinear Analysis 74: 171–181.CrossRefGoogle Scholar
  37. Khan, M. Ali, and A. Piazza. 2012. On the Mitra–Wan forestry model: A unified analysis. Journal of Economic Theory 147: 230–260.CrossRefGoogle Scholar
  38. Khan, M. Ali, and A.J. Zaslavski. 2006. On a uniform turnpike of the third kind in the Robinson–Solow–Srinivasan model. Journal of Economics 92: 137–166.CrossRefGoogle Scholar
  39. Khan, M. Ali, and A.J. Zaslavski. 2009. On existence of weakly maximal programs: The RSS model with non-concave felicities. Journal of Mathematical Economics 45: 624–633.CrossRefGoogle Scholar
  40. Khan, M. Ali, and A.J. Zaslavski. 2010. On two classical turnpike results for the Robinson–Solow–Srinivasan (RSS) model. Advances in Mathematical Economics 13: 47–97.CrossRefGoogle Scholar
  41. Koopmans, T. C. 1970. Scientific papers of Tjalling C. Koopmans. Vols. 1 and 2. Berlin: Springer.Google Scholar
  42. Majumdar, M., and M. Nermuth. 1982. Dynamic optimization in non-convex models with irreversible investment: Monotonicity and turnpike results. Zeitschrift für Nationalökonomie 42: 339–362.CrossRefGoogle Scholar
  43. Majumdar, M. Mitra, T. and Nishimura, K. (eds.) 2000. Optimization and chaos. Berlin: Springer.Google Scholar
  44. May, R.B. 1976. Simple mathematical models with very complicated dynamics. Nature 40: 459–467.CrossRefGoogle Scholar
  45. McKenzie, L.W. 1986. Optimal economic growth, turnpike theorems and comparative dynamics. In Handbook of mathematical economics, ed. K.J. Arrow and M. Intrilligator, Vol. 3, 1281–1355. New York: North-Holland.Google Scholar
  46. McKenzie, L.W. 1987. Turnpike theory. In The new palgrave, ed. J. Eatwell, M. Milgate, and P.K. Newman. London: MacMillan.Google Scholar
  47. McKenzie, L.W. 1998. Turnpikes. American Economic Review, Papers and Proceedings 88: 1–14.Google Scholar
  48. McKenzie, L.W. 2002. Classical general equilibrium theory. Cambridge, MA: The MIT Press.Google Scholar
  49. Mitra, T. 2005. Characterization of the turnpike property of optimal paths in the aggregative model of intertemporal allocation. International Journal of Economic Theory 1: 247–275.CrossRefGoogle Scholar
  50. Samuelson, P.A. 1965–2011. The collected scientific papers of Paul A. Samuelson. Vol. 1–7. Cambridge, MA: MIT Press.Google Scholar
  51. Simons, S. 2008. From Hahn–Banach to monotonicity. Berlin: Springer.Google Scholar
  52. Yano, M. 1990. von Neumann facets and the dynamic stability of perfect foresight equilibrium paths in neo-classical trade models. Journal of Economics 51: 27–96.CrossRefGoogle Scholar
  53. Yano, M. 1998. On the dual stability of a von Neumann facet and the inefficacy of temporary fiscal policy. Econometrica 66: 427–451.CrossRefGoogle Scholar
  54. Zaslavski, A.J. 2005. Turnpike properties in the calculus of variations and optimal control. New York: Springer.Google Scholar
  55. Zaslavski, A.J. 2009. Two turnpike results for discrete-time optimal control systems. Nonlinear Analysis 71: 902–909.CrossRefGoogle Scholar
  56. Zaslavski, A.J. 2010. Structure of approximate solutions for discrete-time optimal control systems arising in economic dynamics. Nonlinear Analysis 73: 952–970.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • M. Ali Khan
    • 1
  • Adriana Piazza
    • 1
  1. 1.