The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Maximum Score Methods

  • Robert P. Sherman
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2847

Abstract

This article describes some aspects of maximum score estimation of parameters of multinomial and, especially, binomial choice models. In the context of binomial choice models, strengths and weaknesses of the estimation procedure are discussed, as well as its relation to classical quantile regression estimation and its nonstandard rate of convergence. The benefits of smoothing the score criterion function are also noted.

Keywords

Binary response models Bootstrap Central limit theorems Heteroskedasticity Linear median regression Maximum likelihood Maximum score methods Multinomial choice models Quantile regression Random utility maximization Semiparametric estimation 
This is a preview of subscription content, log in to check access

Bibliography

  1. Abrevaya, J., and J. Huang. 2005. On the bootstrap of the maximum score estimator. Econometrica 73: 1175–1204.CrossRefGoogle Scholar
  2. Horowitz, J.L. 1992. A smoothed maximum score estimator for the binary response model. Econometrica 60: 505–531.CrossRefGoogle Scholar
  3. Horowitz, J.L. 1993. Optimal rates of convergence of parameter estimators in the binary response model with weak distributional assumptions. Econometric Theory 9: 1–18.CrossRefGoogle Scholar
  4. Horowitz, J.L. 2002. Bootstrap critical values for tests based on the smoothed maximum score estimator. Econometrica 111: 141–167.CrossRefGoogle Scholar
  5. Kim, J., and D. Pollard. 1990. Cube root asymptotics. Annals of Statistics 18: 191–219.CrossRefGoogle Scholar
  6. Koenker, R., and G. Bassett Jr. 1978. Regression quantiles. Econometrica 46: 33–50.CrossRefGoogle Scholar
  7. Kordas, G. 2006. Smoothed binary regression quantiles. Journal of Applied Econometrics 21: 387–407.CrossRefGoogle Scholar
  8. Manski, C.F. 1975. Maximum score estimation of the stochastic utility model of choice. Journal of Econometrics 3: 205–228.CrossRefGoogle Scholar
  9. Manski, C.F. 1985. Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator. Journal of Econometrics 27: 313–333.CrossRefGoogle Scholar
  10. Manski, C.F. 1988. Analog estimation methods in econometrics. New York: Chapman and Hall.Google Scholar
  11. Manski, C.F. 1995. Identification problems in the social sciences. Cambridge, MA: Harvard University Press.Google Scholar
  12. McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In Frontiers in econometrics, ed. P. Zarembka. New York: Academic.Google Scholar
  13. Powell, J.L. 1994. Estimation of semiparametric models. In Handbook of econometrics, vol. 4, ed. R. Engle and D. McFadden. Amsterdam: North-Holland.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Robert P. Sherman
    • 1
  1. 1.