The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Robust Control

  • Noah Williams
Reference work entry


Robust control is an approach for confronting model uncertainty in decision making, aiming at finding decision rules which perform well across a range of alternative models. This typically leads to a minimax approach, where the robust decision rule minimizes the worst-case outcome from the possible set. This article discusses the rationale for robust decisions, the background literature in control theory, and different approaches which have been used in economics, including the most prominent approach due to Hansen and Sargent.


Ambiguity Ambiguity aversion Control theory Error modelling Kalman filtering Lagrange multipliers Linear quadratic control Max-min expected utility Minimax Model uncertainty Optimal control Perturbation Probability distribution Risk aversion Robust control Uncertainty aversion Unstructured uncertainty 

JEL Classification

D4 D10 
This is a preview of subscription content, log in to check access.


  1. Anderson, E., L.P. Hansen, and T. Sargent. 2003. A quartet of semi-groups for model specification, robustness, prices of risk, and model detection. Journal of the European Economic Association 1: 68–123.CrossRefGoogle Scholar
  2. Backus, D.K., B.R. Routledge, and S.E. Zin. 2005. Exotic preferences for macroeconomists. In NBER macroeconomics annual 2004, ed. M. Gertler and K. Rogoff. Cambridge, MA: MIT Press.Google Scholar
  3. Başar, T., and P. Bernhard. 1995. H-optimal control and related minimax design problems. Boston: Birkhauser.Google Scholar
  4. Brainard, W. 1967. Uncertainty and the effectiveness of policy. American Economic Review 57: 411–425.Google Scholar
  5. Brock, W.A., and S.N. Durlauf. 2005. Local robustness analysis: Theory and application. Journal of Economic Dynamics and Control 29: 2067–2092.CrossRefGoogle Scholar
  6. Brock, W.A., S.N. Durlauf, and K.D. West. 2003. Policy evaluation in uncertain economic environments. Brookings Papers on Economic Activity 2003(1): 235–301.CrossRefGoogle Scholar
  7. Burl, J.B. 1999. Linear optimal control: H2and Hmethods. Menlo Park: Addison-Wesley.Google Scholar
  8. Cagetti, M., L.P. Hansen, T.J. Sargent, and N. Williams. 2002. Robustness and pricing with uncertain growth. Review of Financial Studies 15: 363–404.CrossRefGoogle Scholar
  9. Chamberlain, G. 2000. Econometric applications of maxmin expected utility theory. Journal of Applied Econometrics 15: 625–644.CrossRefGoogle Scholar
  10. Cogley, T., and T.J. Sargent. 2005. The conquest of U.S. inflation: Learning and robustness to model uncertainty. Review of Economic Dynamics 8: 528–563.CrossRefGoogle Scholar
  11. Doyle, J.C. 1978. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control 23: 756–757.CrossRefGoogle Scholar
  12. Doyle, J.C., K. Glover, P.P. Khargonekar, and B.A. Francis. 1989. State-space solutions to standard H2 and H control problems. IEEE Transactions on Automatic Control 34: 831–847.CrossRefGoogle Scholar
  13. Duffie, D., and L.G. Epstein. 1992. Stochastic differential utility. Econometrica 60: 353–394.CrossRefGoogle Scholar
  14. Ellsberg, D. 1961. Risk, ambiguity and the savage axioms. Quarterly Journal of Economics 75: 643–669.CrossRefGoogle Scholar
  15. Epstein, L., and M. Schneider. 2003. Recursive multiple-priors. Journal of Economic Theory 113: 1–31.CrossRefGoogle Scholar
  16. Epstein, L., and S. Zin. 1989. Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica 57: 937–969.CrossRefGoogle Scholar
  17. Giannoni, M. 2002. Does model uncertainty justify caution? Robust optimal monetary policy in a forward-looking model. Macroeconomic Dynamics 6: 111–144.CrossRefGoogle Scholar
  18. Gilboa, I., and D. Schmeidler. 1989. Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 18: 141–153.CrossRefGoogle Scholar
  19. Hansen, L.P., and T.J. Sargent. 2001. Acknowledging misspecification in macroeconomic theory. Review of Economic Dynamics 4: 519–535.CrossRefGoogle Scholar
  20. Hansen, L.P., and T.J. Sargent. 2005a. Robust estimation and control under commitment. Journal of Economic Theory 124: 258–301.CrossRefGoogle Scholar
  21. Hansen, L.P., and T.J. Sargent. 2005b. Robust estimation and control without commitment, Working paper. Chicago: Department of Economics, University of Chicago.Google Scholar
  22. Hansen, L.P., and T.J. Sargent. 2006. Fragile beliefs and the price of model uncertainty. Working paper, Department of Economics, University of Chicago.Google Scholar
  23. Hansen, L.P., and T.J. Sargent. 2008. Robustness. Princeton: Princeton University Press.CrossRefGoogle Scholar
  24. Hansen, L.P., T. Sargent, and T. Tallarini. 1999. Robust permanent income and pricing. Review of Economic Studies 66: 873–907.CrossRefGoogle Scholar
  25. Hansen, L.P., T.J. Sargent, G.A. Turmuhambetova, and N. Williams. 2006. Robust control and model misspecification. Journal of Economic Theory 128: 45–90.CrossRefGoogle Scholar
  26. Jacobson, D.H. 1973. Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games. IEEE Transactions on Automatic Control AC 18: 1124–1131.Google Scholar
  27. Kreps, D.M., and E.L. Porteus. 1978. Temporal resolution of uncertainty and dynamic choice. Econometrica 46: 185–200.CrossRefGoogle Scholar
  28. Levin, A.T., and J. Williams. 2003. Robust monetary policy with competing reference models. Journal of Monetary Economics 50: 945–975.CrossRefGoogle Scholar
  29. Limebeer, D.J.N., B.D.O. Anderson, and B. Hendel. 1994. A Nash game approach to mixed H2/H control. IEEE Transactions on Automatic Control 39: 69–82.CrossRefGoogle Scholar
  30. Maccheroni, F., M. Marinacci, and A. Rustichini. 2006. Dynamic variational preferences. Journal of Economic Theory 128: 4–44.CrossRefGoogle Scholar
  31. Maenhout, P.J. 2004. Robust portfolio rules and asset pricing. Review of Financial Studies 17: 951–983.CrossRefGoogle Scholar
  32. Onatski, A., and J.H. Stock. 2002. Robust monetary policy under model uncertainty in a small model of the US economy. Macroeconomic Dynamics 6: 85–110.CrossRefGoogle Scholar
  33. Onatski, A., and N. Williams. 2003. Modeling model uncertainty. Journal of the European Economic Association 1: 1087–1122.CrossRefGoogle Scholar
  34. Petersen, I.R., M.R. James, and P. Dupuis. 2000. Minimax optimal control of stochastic uncertain systems with relative entropy constraints. IEEE Transactions on Automatic Control 45: 398–412.CrossRefGoogle Scholar
  35. Sims, C.A. 2001. Pitfalls of a minimax approach to model uncertainty. American Economic Review 91: 51–54.CrossRefGoogle Scholar
  36. Skiadas, C. 2003. Robust control and recursive utility. Finance and Stochastics 7: 475–489.CrossRefGoogle Scholar
  37. Svensson, L.E. 2001. Robust control made simple. Working paper, Department of Economics, Princeton University.Google Scholar
  38. Svensson, L.E.O., and N. Williams. 2006. Monetary policy with model uncertainty: Distribution forecast targeting. Working paper, Department of Economics, Princeton University.Google Scholar
  39. Tornell, A. 2003. Exchange rate anomalies under model misspecification: A mixed optimal/robust approach. Working paper, Department of Economics, UCLAGoogle Scholar
  40. Whittle, P. 1981. Risk sensitive linear quadratic Gaussian control. Advances in Applied Probability 13: 764–777.CrossRefGoogle Scholar
  41. Zames, G. 1981. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control 26: 301–320.CrossRefGoogle Scholar
  42. Zhou, K., J. Doyle, and K. Glover. 1996. Robust and optimal control. Upper Saddle River: Prentice Hall.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Noah Williams
    • 1
  1. 1.